Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Dec;68(12):2962–2966. doi: 10.1073/pnas.68.12.2962

New Polarity Suppressors in Escherichia coli: Suppression and Messenger RNA Stability

Timothy Carter 1, Austin Newton 1
PMCID: PMC389570  PMID: 4943549

Abstract

Two new polarity suppressors (Su27 and Su78) have been isolated in Escherichia coli. Both suppress polarity in the trp and lac operons, and neither shows codon specificity for suppression. Extreme polar mutants of the lac z gene that contain either Su27 or Su78 make mRNA from the entire operon; however, no active β-galactosidase is translated from the z-gene messenger, and the amount of distal messenger is greater than would be expected from corresponding enzyme activities. Puromycin treatment of lac+ strains mimics the effect of polar chain-termination mutations in destabilizing lac mRNA. This effect is completely reversed by Su27, and it is partially reversed by Su78. The results suggest that these suppressors act by stabilizing mRNA after premature termination of protein synthesis.

Keywords: lac operon, Su+, tryptophan mutants, melibiose, rifampin, nalidixic acid

Full text

PDF
2962

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BECKWITH J. RESTORATION OF OPERON ACTIVITY BY SUPPRESSORS. Biochim Biophys Acta. 1963 Sep 17;76:162–164. [PubMed] [Google Scholar]
  2. Baker R. F., Yanofsky C. The periodicity of RNA polymerase initiations: a new regulatory feature of transcription. Proc Natl Acad Sci U S A. 1968 May;60(1):313–320. doi: 10.1073/pnas.60.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carter T., Newton A. Messenger RNA stability and polarity in the Lac operon of Escherichia coli. Nature. 1969 Aug 16;223(5207):707–710. doi: 10.1038/223707a0. [DOI] [PubMed] [Google Scholar]
  4. FRANKLIN N. C., LURIA S. E. Transduction by bacteriophage P-1 and the properties of the lac genetic region in E. coli and S. dysenteriae. Virology. 1961 Nov;15:299–311. doi: 10.1016/0042-6822(61)90362-2. [DOI] [PubMed] [Google Scholar]
  5. Gillespie D., Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol. 1965 Jul;12(3):829–842. doi: 10.1016/s0022-2836(65)80331-x. [DOI] [PubMed] [Google Scholar]
  6. Imamoto F. Evidence for premature termination of transcription of the tryptophan operon in polarity mutants of Escherichia coli. Nature. 1970 Oct 17;228(5268):232–235. doi: 10.1038/228232a0. [DOI] [PubMed] [Google Scholar]
  7. Imamoto F., Ito J., Yanofsky C. Polarity in the tryptophan operon of E. coli. Cold Spring Harb Symp Quant Biol. 1966;31:235–249. doi: 10.1101/sqb.1966.031.01.032. [DOI] [PubMed] [Google Scholar]
  8. Kumar S., Szybalski W. Orientation of transcription of the lac operon and its repressor gene in Escherichia coli. J Mol Biol. 1969 Feb 28;40(1):145–151. doi: 10.1016/0022-2836(69)90303-9. [DOI] [PubMed] [Google Scholar]
  9. Kuwano M., Schlessinger D., Morse D. E. Loss of dispensable endonuclease activity in relief of polarity by suA. Nat New Biol. 1971 Jun 16;231(24):214–217. doi: 10.1038/newbio231214a0. [DOI] [PubMed] [Google Scholar]
  10. LEIVE L. A NONSPECIFIC INCREASE IN PERMEABILITY IN ESCHERICHIA COLI PRODUCED BY EDTA. Proc Natl Acad Sci U S A. 1965 Apr;53:745–750. doi: 10.1073/pnas.53.4.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Morse D. E., Primakoff P. Relief of polarity in E. coli by "suA". Nature. 1970 Apr 4;226(5240):28–31. doi: 10.1038/226028a0. [DOI] [PubMed] [Google Scholar]
  12. Morse D. E., Yanofsky C. Polarity and the degradation of mRNA. Nature. 1969 Oct 25;224(5217):329–331. doi: 10.1038/224329a0. [DOI] [PubMed] [Google Scholar]
  13. Newton A. Effect of nonsense mutations on translation of the lactose operon of Escherichia coli. Cold Spring Harb Symp Quant Biol. 1966;31:181–187. doi: 10.1101/sqb.1966.031.01.026. [DOI] [PubMed] [Google Scholar]
  14. Newton A. Isolation and characterization of frameshift mutations in the lac operon. J Mol Biol. 1970 May 14;49(3):589–601. doi: 10.1016/0022-2836(70)90283-4. [DOI] [PubMed] [Google Scholar]
  15. Newton A. Re-initiation of polypeptide synthesis and polarity in the lac operon of Escherichia coli. J Mol Biol. 1969 May 14;41(3):329–339. doi: 10.1016/0022-2836(69)90279-4. [DOI] [PubMed] [Google Scholar]
  16. Newton W. A., Beckwith J. R., Zipser D., Brenner S. Nonsense mutants and polarity in the lac operon of Escherichia coli. J Mol Biol. 1965 Nov;14(1):290–296. doi: 10.1016/s0022-2836(65)80250-9. [DOI] [PubMed] [Google Scholar]
  17. OKAMOTO K., SUGINO Y., NOMURA M. Synthesis and turnover of phage messenger RNA in E. coli infected with bacteriophage T4 in the presence of chloromycetin. J Mol Biol. 1962 Nov;5:527–534. doi: 10.1016/s0022-2836(62)80126-0. [DOI] [PubMed] [Google Scholar]
  18. PRESTIDGE L. S., PARDEE A. B. A SECOND PERMEASE FOR METHYL-THIO-BETA-D-GALACTOSIDE IN ESCHERICHIA COLI. Biochim Biophys Acta. 1965 May 4;100:591–593. doi: 10.1016/0304-4165(65)90029-2. [DOI] [PubMed] [Google Scholar]
  19. Ron E. Z., Kohler R. E., Davis B. D. Increased stability of polysomes in an Escherichia coli mutant with relaxed control of RNA synthesis. Proc Natl Acad Sci U S A. 1966 Aug;56(2):471–475. doi: 10.1073/pnas.56.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SIGNER E. R. RECOMBINATION BETWEEN COLIPHAGES LAMBDA AND PHI-80. Virology. 1964 Apr;22:650–651. doi: 10.1016/0042-6822(64)90090-x. [DOI] [PubMed] [Google Scholar]
  21. Scaife J., Beckwith J. R. Mutational alteration of the maximal level of Lac operon expression. Cold Spring Harb Symp Quant Biol. 1966;31:403–408. doi: 10.1101/sqb.1966.031.01.052. [DOI] [PubMed] [Google Scholar]
  22. Schlessinger D., Mangiarotti G., Apirion D. The formation and stabilization of 30S and 50S ribosome couples in Escherichia coli. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1782–1789. doi: 10.1073/pnas.58.4.1782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shapiro J., Machattie L., Eron L., Ihler G., Ippen K., Beckwith J. Isolation of pure lac operon DNA. Nature. 1969 Nov 22;224(5221):768–774. doi: 10.1038/224768a0. [DOI] [PubMed] [Google Scholar]
  24. Stubbs J. D., Hall B. D. Level of tryptophan messenger RNA in Escherichia coli. J Mol Biol. 1968 Oct 28;37(2):289–302. doi: 10.1016/0022-2836(68)90268-4. [DOI] [PubMed] [Google Scholar]
  25. Summers W. C. Untranslated T7 phage mRNA is stabilized in suA host. Nat New Biol. 1971 Apr 14;230(15):208–208. doi: 10.1038/newbio230208a0. [DOI] [PubMed] [Google Scholar]
  26. Varmus H. E., Perlman R. L., Pastan I. Regulation of lac transcription in antibiotic-treated E. coli. Nat New Biol. 1971 Mar 10;230(10):41–44. doi: 10.1038/newbio230041a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES