Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Dec;68(12):3015–3020. doi: 10.1073/pnas.68.12.3015

Tetrahedral Iron in the Active Center of Plant Ferredoxins and Beef Adrenodoxin*

William A Eaton †,‡,*,||, Graham Palmer †,‡,*,||, James A Fee †,‡,*,||,§, Tokuji Kimura †,‡,*,||, Walter Lovenberg †,‡,*,||
PMCID: PMC389581  PMID: 4332004

Abstract

The coordination structure of the iron-sulfur complex in spinach ferredoxin and adrenodoxin is investigated by optical spectroscopy. The circular-dichroism and absorption spectra of these two-iron iron-sulfur proteins reveal weak electronic transitions in the near-infrared wavelength range, 0.8-2.5 μm (12,500-4000 cm-1). On the basis of the low absorption intensities and large anisotropy factors, dd transitions of the iron can be identified in the reduced proteins at about 4000 cm-1 and 6000 cm-1. The low energy of these one-center ligand-field transitions, together with the similarity to the ligand-field spectrum of the one-iron protein rubredoxin, leads to the conclusion that the reduced two-iron iron-sulfur proteins also contain a high-spin ferrous ion in a distorted tetrahedral site.

Keywords: iron-sulfur proteins, rubredoxin, near-infrared circular dichroism, ligand-field spectrum, EPR

Full text

PDF
3015

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brintzinger H., Palmer G., Sands R. H. On the ligand field of iron in ferredoxin from spinach chloroplasts and related nonheme iron enzymes. Proc Natl Acad Sci U S A. 1966 Feb;55(2):397–404. doi: 10.1073/pnas.55.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eaton W. A., Charney E. Near-infrared absorption and circular dichroism spectra of ferrocytochrome c: d-d transitions. J Chem Phys. 1969 Nov 15;51(10):4502–4505. doi: 10.1063/1.1671818. [DOI] [PubMed] [Google Scholar]
  3. Eaton W. A., Lovenberg W. Near-infrared circular dichroism of an iron-sulfur protein. D leads to d transitions in rubredoxin. J Am Chem Soc. 1970 Dec 2;92(24):7195–7198. doi: 10.1021/ja00727a030. [DOI] [PubMed] [Google Scholar]
  4. Fee J. A., Palmer G. The properties of parsley ferredoxin and its selenium-containing homolog. Biochim Biophys Acta. 1971 Aug 6;245(1):175–195. doi: 10.1016/0005-2728(71)90020-x. [DOI] [PubMed] [Google Scholar]
  5. Gibson J. F., Hall D. O., Thornley J. H., Whatley F. R. The iron complex in spinach ferredoxin. Proc Natl Acad Sci U S A. 1966 Sep;56(3):987–990. doi: 10.1073/pnas.56.3.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Herriott J. R., Sieker L. C., Jensen L. H., Lovenberg W. Structure of rubredoxin: an x-ray study to 2.5 A resolution. J Mol Biol. 1970 Jun 14;50(2):391–406. doi: 10.1016/0022-2836(70)90200-7. [DOI] [PubMed] [Google Scholar]
  7. Kimura T., Huang J. J. Studies on adrenal steroid hydroxylases: optical absorption spectroscopy of adrenal iron-sulfur protein (adrenodoxin) and its apoprotein. Arch Biochem Biophys. 1970 Apr;137(2):357–364. doi: 10.1016/0003-9861(70)90449-2. [DOI] [PubMed] [Google Scholar]
  8. Lovenberg W., Williams W. M. Further observations on the chemical nature of rubredoxin from Clostridium pasteurianum. Biochemistry. 1969 Jan;8(1):141–148. doi: 10.1021/bi00829a020. [DOI] [PubMed] [Google Scholar]
  9. Palmer G., Brintzinger H., Estabrook R. W. Spectroscopic studies on spinach ferredoxin and adrenodoxin. Biochemistry. 1967 Jun;6(6):1658–1664. doi: 10.1021/bi00858a012. [DOI] [PubMed] [Google Scholar]
  10. Palmer G., Dunham W. R., Fee J. A., Sands R. H., Iizuka T., Yonetani T. The magnetic susceptibility of spinach ferredoxin from 77-250 degrees K: a measurement of the antiferromagnetic coupling between the two iron atoms. Biochim Biophys Acta. 1971 Aug 6;245(1):201–207. doi: 10.1016/0005-2728(71)90022-3. [DOI] [PubMed] [Google Scholar]
  11. Palmer G., Sands R. H. On the magnetic resonance of spinach ferredoxin. J Biol Chem. 1966 Jan 10;241(1):253–253. [PubMed] [Google Scholar]
  12. Petering D. H., Palmer G. Properties of spinach ferredoxin in anaerobic urea solution: a comparison with the native protein. Arch Biochem Biophys. 1970 Dec;141(2):456–464. doi: 10.1016/0003-9861(70)90162-1. [DOI] [PubMed] [Google Scholar]
  13. Phillips W. D., Poe M., Weiher J. F., McDonald C. C., Lovenberg W. Proton magnetic resonance, magnetic susceptibility and Mössbauer studies of Clostridium pasteurianum rubredoxin. Nature. 1970 Aug 8;227(5258):574–577. doi: 10.1038/227574a0. [DOI] [PubMed] [Google Scholar]
  14. Watari H., Kimura T. Study of the adrenal non-heme iron protein (adrenodoxin) by electron spin resonance. Biochem Biophys Res Commun. 1966 Jul 6;24(1):106–112. doi: 10.1016/0006-291x(66)90417-7. [DOI] [PubMed] [Google Scholar]
  15. Wilson D. F. The near infra-red electronic spectra of non-heme iron proteins at minus 196 degrees. Arch Biochem Biophys. 1967 Oct;122(1):254–256. doi: 10.1016/0003-9861(67)90149-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES