Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Dec;68(12):3083–3087. doi: 10.1073/pnas.68.12.3083

Virus-Specific Proteins Synthesized in Encephalomyocarditis Virus-Infected HeLa Cells

Byron E Butterworth 1,2, Linda Hall 1,2,*, C Martin Stoltzfus 1,2,, Roland R Rueckert 1,2
PMCID: PMC389595  PMID: 4332006

Abstract

The in vivo synthesis of encephalomyocarditis-specific proteins was studied by labeling the viral proteins with radioactive amino acids under conditions where host-protein synthesis was almost completely inhibited. To assure recovery of all proteins, intact cells were lysed in hot 1% sodium dodecyl sulfate. These lysates were analyzed by quantitative high-resolution electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. This technique allowed the detection and estimation of the molecular weight of 15 virus-specific polypeptides: A, 100,000; B, 90,000; C, 84,000; D, 75,000, D1, 65,000; E, 56,000; ε, 40,000; F, 38,000; α, 34,000; β, 30,000; γ, 23,000; G, 16,000; H, 12,000; I, 11,000; and δ, 9,000. Pulse-chase experiments, in conjunction with cyanogen bromide and tryptic mapping of the isolated polypeptides, indicate that at least three primary gene products (A,F,C), with a cumulative weight of about 220,000, are generated during translation of the RNA genome. Chains A and C then undergo post-translational cleavages, while F remains uncleaved. The proteins generated by the cleavage of A include all of the capsid chains (α, β, γ, δ, ε). Those generated by the cleavage of C include D and E. The chains α, β, γ, δ, E, F, G, H, I, with a cumulative molecular weight of about 230,000, are stable and are produced in about equimolar amounts. A model for the synthesis of, and a cleavage sequence that accounts for, all of the viral polypeptides is proposed.

Keywords: gel electrophoresis, tryptic mapping, cyanogen bromide mapping

Full text

PDF
3083

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burness A. T. Ribonucleic acid content of encephalomyocarditis virus. J Gen Virol. 1970 Mar;6(3):373–380. doi: 10.1099/0022-1317-6-3-373. [DOI] [PubMed] [Google Scholar]
  2. Cooper P. D., Summers D. F., Maizel J. V. Evidence for ambiguity in the posttranslational cleavage of poliovirus proteins. Virology. 1970 Jul;41(3):408–418. doi: 10.1016/0042-6822(70)90161-3. [DOI] [PubMed] [Google Scholar]
  3. Craven G. R., Voynow P., Hardy S. J., Kurland C. G. The ribosomal proteins of Escherichia coli. II. Chemical and physical characterization of the 30S ribosomal proteins. Biochemistry. 1969 Jul;8(7):2906–2915. doi: 10.1021/bi00835a032. [DOI] [PubMed] [Google Scholar]
  4. Dunker A. K., Rueckert R. R. Observations on molecular weight determinations on polyacrylamide gel. J Biol Chem. 1969 Sep 25;244(18):5074–5080. [PubMed] [Google Scholar]
  5. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  6. Hall L., Rueckert R. R. Infection of mouse fibroblasts by cardioviruses: premature uncoating and its prevention by elevated pH and magnesium chloride. Virology. 1971 Jan;43(1):152–165. doi: 10.1016/0042-6822(71)90233-9. [DOI] [PubMed] [Google Scholar]
  7. Holland J. J., Kiehn E. D. Specific cleavage of viral proteins as steps in the synthesis and maturation of enteroviruses. Proc Natl Acad Sci U S A. 1968 Jul;60(3):1015–1022. doi: 10.1073/pnas.60.3.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jacobson M. F., Asso J., Baltimore D. Further evidence on the formation of poliovirus proteins. J Mol Biol. 1970 May 14;49(3):657–669. doi: 10.1016/0022-2836(70)90289-5. [DOI] [PubMed] [Google Scholar]
  9. Jacobson M. F., Baltimore D. Morphogenesis of poliovirus. I. Association of the viral RNA with coat protein. J Mol Biol. 1968 Apr 28;33(2):369–378. doi: 10.1016/0022-2836(68)90195-2. [DOI] [PubMed] [Google Scholar]
  10. Jacobson M. F., Baltimore D. Polypeptide cleavages in the formation of poliovirus proteins. Proc Natl Acad Sci U S A. 1968 Sep;61(1):77–84. doi: 10.1073/pnas.61.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kiehn E. D., Holland J. J. Synthesis and cleavage of enterovirus polypeptides in mammalian cells. J Virol. 1970 Mar;5(3):358–367. doi: 10.1128/jvi.5.3.358-367.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Medappa K. C., McLean C., Rueckert R. R. On the structure of rhinovirus 1A. Virology. 1971 May;44(2):259–270. doi: 10.1016/0042-6822(71)90258-3. [DOI] [PubMed] [Google Scholar]
  13. Roumiantzeff M., Summers D. F., Maizel J. V., Jr In vitro protein synthetic activity of membrane-bound poliovirus polyribosomes. Virology. 1971 May;44(2):249–258. doi: 10.1016/0042-6822(71)90257-1. [DOI] [PubMed] [Google Scholar]
  14. Rueckert R. R., Dunker A. K., Stoltzfus C. M. The structure of mouse-Elberfeld virus: a model. Proc Natl Acad Sci U S A. 1969 Mar;62(3):912–919. doi: 10.1073/pnas.62.3.912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Scraba D. G., Kay C. M., Colter J. S. Physico-chemical studies of three variants of Mengo virus and their constituent ribonucleates. J Mol Biol. 1967 May 28;26(1):67–79. doi: 10.1016/0022-2836(67)90261-6. [DOI] [PubMed] [Google Scholar]
  16. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  17. Summers D. F., Maizel J. V., Jr, Darnell J. E., Jr Evidence for virus-specific noncapsid proteins in poliovirus-infected HeLa cells. Proc Natl Acad Sci U S A. 1965 Aug;54(2):505–513. doi: 10.1073/pnas.54.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Summers D. F., Maizel J. V., Jr Evidence for large precursor proteins in poliovirus synthesis. Proc Natl Acad Sci U S A. 1968 Mar;59(3):966–971. doi: 10.1073/pnas.59.3.966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Swank R. T., Munkres K. D. Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate. Anal Biochem. 1971 Feb;39(2):462–477. doi: 10.1016/0003-2697(71)90436-2. [DOI] [PubMed] [Google Scholar]
  20. Taber R., Rekosh D., Baltimore D. Effect of pactamycin on synthesis of poliovirus proteins: a method for genetic mapping. J Virol. 1971 Oct;8(4):395–401. doi: 10.1128/jvi.8.4.395-401.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES