Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Dec;68(12):3145–3149. doi: 10.1073/pnas.68.12.3145

Is Drosophila dAT on the Y Chromosome?

Martin Blumenfeld 1, Hugh S Forrest 1
PMCID: PMC389609  PMID: 5002284

Abstract

DNA isolated from Drosophila melanogaster embryos contains measurable amounts of dAT, the copolymer of deoxyadenylate and deoxythymidylate. In wild-type (XX,XY) embryos, dAT constitutes 4% of the total DNA. In embryos containing extra Y chromosomes, or even extra portions of Y chromosomes, dAT constitutes as much as 7% of the total. The enrichment for dAT is dependent upon the number of extra short arms of the Y chromosome (YS) or long arms (YL) of the Y chromosome per individual. This enrichment of dAT dependent on the Y chromosome may be interpreted in several ways. The most straightforward interpretation is that dAT is present in high concentrations on the Y chromosome.

Keywords: mutants, ultracentrifugation, embryos

Full text

PDF
3145

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASCOLI F., BOTRE C., LIQUORI A. M. Irreversible changes of ionic activities following thermal denaturation of sodium deoxyribonucleate. J Mol Biol. 1961 Apr;3:202–207. doi: 10.1016/s0022-2836(61)80046-6. [DOI] [PubMed] [Google Scholar]
  2. Astell C. R., Suzuki D. T., Klett R. P., Smith M., Goldberg I. H. The intracellular location of the adenine- and thymine-rich component of deoxyribonucleate in testicular cells of the crab, Cancer productus. Exp Cell Res. 1969 Jan;54(1):3–10. doi: 10.1016/0014-4827(69)90284-5. [DOI] [PubMed] [Google Scholar]
  3. DAVIDSON N., WIDHOLM J., NANDI U. S., JENSEN R., OLIVERA B. M., WANG J. C. PREPARATION AND PROPERTIES OF NATIVE CRAB DAT. Proc Natl Acad Sci U S A. 1965 Jan;53:111–118. doi: 10.1073/pnas.53.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fansler B. S., Travaglini E. C., Loeb L. A., Schultz J. Structure of Drosophila melanogaster dAT replicated in an in vitro system. Biochem Biophys Res Commun. 1970 Sep 30;40(6):1266–1272. doi: 10.1016/0006-291x(70)90003-3. [DOI] [PubMed] [Google Scholar]
  5. Hollenberg C. P., Borst P., van Bruggen E. F. Mitochondrial DNA. V. A 25 micron closed circular duplex DNA molecule in wild-type yeast mitochondria. Stucture and genetic complexity. Biochim Biophys Acta. 1970 May 21;209(1):1–15. [PubMed] [Google Scholar]
  6. Laird C. D., McCarthy B. J. Magnitude of interspecific nucleotide sequence variability in Drosophila. Genetics. 1968 Oct;60(2):303–322. doi: 10.1093/genetics/60.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  8. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  9. SWARTZ M. N., TRAUTNER T. A., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. XI. Further studies on nearest neighbor base sequences in deoxyribonucleic acids. J Biol Chem. 1962 Jun;237:1961–1967. [PubMed] [Google Scholar]
  10. Waldvogel F. A., Swartz M. N. Subcellular location of crab poly(dA-dT). Biochim Biophys Acta. 1971 Sep 24;246(3):403–411. doi: 10.1016/0005-2787(71)90776-3. [DOI] [PubMed] [Google Scholar]
  11. Yunis J. J., Yasmineh W. G. Satellite DNA in constitutive heterochromatin of the guinea pig. Science. 1970 Apr 10;168(3928):263–265. doi: 10.1126/science.168.3928.263. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES