Abstract
DNA containing the multiple genes for 5S RNA has been isolated from the genome of Xenopus laevis. Whereas 5S RNA is about 57% G + C, the 5S DNA has a base composition of about 33-35% GC and consists of two alternating regions that differ in base composition by at least 20% GC. A denaturation map of 5S DNA analyzed by electron microscopy demonstrates that the repeating pattern is regular and each repeating unit has a mass of about 500,000 daltons. If one gene for 5S RNA (84,000 daltons native) were present in each repeat, it should comprise about 16.8% of 5S DNA. This arrangement is confirmed, since 6.8% of pure 5S DNA (13.6% of its base pairs) hybridized with 5S RNA. The remaining 83% of each repeating unit is considered to be “spacer” DNA. The 5S RNA hybridizes with about 0.05% of the bulk DNA of X. laevis, so that 5S DNA comprises about 0.7% of the total nuclear DNA. This is equivalent to about 24,000 repeating units for each haploid complement of DNA. These repeats are highly clustered; as many as 86 have been visualized along a single DNA molecule.
Keywords: gene isolation, 5S RNA, repetitive DNA, spacer DNA
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aloni Y., Hatlen L. E., Attardi G. Studies of fractionated HeLa cell metaphase chromosomes. II. chromosomal distribution of sites for transfer RNA and 5 s RNA. J Mol Biol. 1971 Mar 28;56(3):555–563. doi: 10.1016/0022-2836(71)90401-3. [DOI] [PubMed] [Google Scholar]
- Birnstiel M. L., Wallace H., Sirlin J. L., Fischberg M. Localization of the ribosomal DNA complements in the nucleolar organizer region of Xenopus laevis. Natl Cancer Inst Monogr. 1966 Dec;23:431–447. [PubMed] [Google Scholar]
- Brown D. D., Littna E. Synthesis and accumulation of low molecular weight RNA during embryogenesis of Xenopus laevis. J Mol Biol. 1966 Sep;20(1):95–112. doi: 10.1016/0022-2836(66)90120-3. [DOI] [PubMed] [Google Scholar]
- Brown D. D., Weber C. S. Gene linkage by RNA-DNA hybridization. I. Unique DNA sequences homologous to 4 s RNA, 5 s RNA and ribosomal RNA. J Mol Biol. 1968 Jun 28;34(3):661–680. doi: 10.1016/0022-2836(68)90188-5. [DOI] [PubMed] [Google Scholar]
- Corneo G., Ginelli E., Polli E. Different satellite deoxyribonucleic acids of guinea pig and ox. Biochemistry. 1970 Mar 31;9(7):1565–1571. doi: 10.1021/bi00809a014. [DOI] [PubMed] [Google Scholar]
- Corneo G., Ginelli E., Polli E. Repeated sequences in human DNA. J Mol Biol. 1970 Mar 14;48(2):319–327. doi: 10.1016/0022-2836(70)90163-4. [DOI] [PubMed] [Google Scholar]
- Corneo G., Ginelli E., Soave C., Bernardi G. Isolation and characterization of mouse and guinea pig satellite deoxyribonucleic acids. Biochemistry. 1968 Dec;7(12):4373–4379. doi: 10.1021/bi00852a033. [DOI] [PubMed] [Google Scholar]
- Dawid I. B., Brown D. D., Reeder R. H. Composition and structure of chromosomal and amplified ribosomal DNA's of Xenopus laevis. J Mol Biol. 1970 Jul 28;51(2):341–360. doi: 10.1016/0022-2836(70)90147-6. [DOI] [PubMed] [Google Scholar]
- Freifelder D. Molecular weights of coliphages and coliphage DNA. IV. Molecular weights of DNA from bacteriophages T4, T5 and T7 and the general problem of determination of M. J Mol Biol. 1970 Dec 28;54(3):567–577. doi: 10.1016/0022-2836(70)90127-0. [DOI] [PubMed] [Google Scholar]
- Hatlen L. E., Amaldi F., Attardi G. Oligonucleotide pattern after pancreatic ribonuclease digestion and the 3' and 5' termini of 5S ribonucleic acid from HeLa cells. Biochemistry. 1969 Dec;8(12):4989–5005. doi: 10.1021/bi00840a048. [DOI] [PubMed] [Google Scholar]
- Kersten W., Kersten H., Szybalski W. Physicochemical properties of complexes between deoxyribonucleic acid and antibiotics which affect ribonucleic acid synthesis (actinomycin, daunomycin, cinerubin, nogalamycin, chormomycin, mithramycin, and olivomycin). Biochemistry. 1966 Jan;5(1):236–244. doi: 10.1021/bi00865a031. [DOI] [PubMed] [Google Scholar]
- Kirk J. T. Effect of methylation of cytosine residues on the buoyant density of DNA in caesium chloride solution. J Mol Biol. 1967 Aug 28;28(1):171–172. doi: 10.1016/s0022-2836(67)80087-1. [DOI] [PubMed] [Google Scholar]
- Mairy M., Denis H. Recherches biochimiques sur l'oogenèse. I. Synthèse et accumulation du RNA pendant l'oogenèse du crapaud sud-africain Xenopus laevis. Dev Biol. 1971 Feb;24(2):143–165. doi: 10.1016/0012-1606(71)90092-3. [DOI] [PubMed] [Google Scholar]
- McConaughy B. L., Laird C. D., McCarthy B. J. Nucleic acid reassociation in formamide. Biochemistry. 1969 Aug;8(8):3289–3295. doi: 10.1021/bi00836a024. [DOI] [PubMed] [Google Scholar]
- Perry R. P., Kelley D. E. Persistent synthesis of 5S RNA when production of 28S and 18S ribosomal RNA is inhibited by low doses of actinomycin D. J Cell Physiol. 1968 Dec;72(3):235–246. doi: 10.1002/jcp.1040720311. [DOI] [PubMed] [Google Scholar]
- SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
- Smith K. D., Armstrong J. L., McCarthy B. J. The introduction of radioisotopes into RNA by methylation in vitro. Biochim Biophys Acta. 1967 Jul 18;142(2):323–330. doi: 10.1016/0005-2787(67)90615-6. [DOI] [PubMed] [Google Scholar]
- Wensink P. C., Brown D. D. Denaturation map of the ribosomal DNA of Xenopus laevis. J Mol Biol. 1971 Sep 14;60(2):235–247. doi: 10.1016/0022-2836(71)90290-7. [DOI] [PubMed] [Google Scholar]
- Wimber D. E., Steffensen D. M. Localization of 5S RNA genes on Drosophila chromosomes by RNA-DNA hybridization. Science. 1970 Nov 6;170(3958):639–641. doi: 10.1126/science.170.3958.639. [DOI] [PubMed] [Google Scholar]