Abstract
We have excited detergent-solubilized bovine rhodopsin at room temperature with 530-nm light pulses from a mode locked laser, and have observed the appearance and decay of a transient species that absorbs more strongly at 560 nm than does ground-state rhodopsin. Our data show that the absorbing intermediate appears in a time that is at least as short as the experimental resolution (about 6 psec) and decays with a life time of about 30 nsec. The extremely fast risetime supports the hypothesis that prelumirhodopsin is the product of the primary photoprocess.
Keywords: bovine rhodopsin, laser, picosecond spectroscopy
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrahamson E. W., Ostroy S. E. The photochemical and macromolecular aspects of vision. Prog Biophys Mol Biol. 1967;17:179–215. doi: 10.1016/0079-6107(67)90007-7. [DOI] [PubMed] [Google Scholar]
- Cone R. A. Rotational diffusion of rhodopsin in the visual receptor membrane. Nat New Biol. 1972 Mar 15;236(63):39–43. doi: 10.1038/newbio236039a0. [DOI] [PubMed] [Google Scholar]
- Dalle J. P., Rosenberg B. Radiative and non-radiative losses in the retinol polyenes. Photochem Photobiol. 1970 Aug;12(2):151–167. doi: 10.1111/j.1751-1097.1970.tb06047.x. [DOI] [PubMed] [Google Scholar]
- GRELLMANN K. H., LIVINGSTON R., PRATT D. A flashphotolytic investigation of rhodopsin at low temperatures. Nature. 1962 Mar 31;193:1258–1260. doi: 10.1038/1931258a0. [DOI] [PubMed] [Google Scholar]
- Gilardi R., Karle I. L., Karle J., Sperling W. Crystal structure of the visual chromophores, 11-cis and all-trans retinal. Nature. 1971 Jul 16;232(5307):187–189. doi: 10.1038/232187c0. [DOI] [PubMed] [Google Scholar]
- Guzzo A. V., Pool G. L. Fluorescence spectra of the intermediates of rhodopsin bleaching. Photochem Photobiol. 1969 Jun;9(6):565–570. doi: 10.1111/j.1751-1097.1969.tb07326.x. [DOI] [PubMed] [Google Scholar]
- Guzzo A. V., Pool G. L. Visual pigment fluorescence. Science. 1968 Jan 19;159(3812):312–314. doi: 10.1126/science.159.3812.312. [DOI] [PubMed] [Google Scholar]
- Honig B., Karplus M. Implications of torsional potential of retinal isomers for visual excitation. Nature. 1971 Feb 19;229(5286):558–560. doi: 10.1038/229558a0. [DOI] [PubMed] [Google Scholar]
- Hubbard R., Bownds D., Yoshizawa T. The chemistry of visual photoreception. Cold Spring Harb Symp Quant Biol. 1965;30:301–315. doi: 10.1101/sqb.1965.030.01.032. [DOI] [PubMed] [Google Scholar]
- McConnell D. G. The isolation of retinal outer segment fragments. J Cell Biol. 1965 Dec;27(3):459–473. doi: 10.1083/jcb.27.3.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rentzepis P. M. Lasers in chemistry. Photochem Photobiol. 1968 Dec;8(6):579–588. doi: 10.1111/j.1751-1097.1968.tb05900.x. [DOI] [PubMed] [Google Scholar]
- Rentzepis P. M. Ultrafast processes. Science. 1970 Jul 17;169(3942):239–247. doi: 10.1126/science.169.3942.239. [DOI] [PubMed] [Google Scholar]
- Wald G. The molecular basis of visual excitation. Nature. 1968 Aug 24;219(5156):800–807. doi: 10.1038/219800a0. [DOI] [PubMed] [Google Scholar]
- YOSHIZAWA T., KITO Y., ISHIGAMI M. Studies on the metastable states in the rhodopsin cycle. Biochim Biophys Acta. 1960 Sep 23;43:329–334. doi: 10.1016/0006-3002(60)90444-3. [DOI] [PubMed] [Google Scholar]
- YOSHIZAWA T., WALD G. Pre-lumirhodopsin and the bleaching of visual pigments. Nature. 1963 Mar 30;197:1279–1286. doi: 10.1038/1971279a0. [DOI] [PubMed] [Google Scholar]