Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Oct;69(10):2823–2827. doi: 10.1073/pnas.69.10.2823

Structure of Inserted Bacteriophage Mu-1 DNA and Physical Mapping of Bacterial Genes by Mu-1 DNA Insertion

Ming-Ta Hsu 1, Norman Davidson 1
PMCID: PMC389653  PMID: 4562742

Abstract

It is shown, by electron microscope observation of the structures of heteroduplexes, that Mu-1 DNA inserted into the bacterial episomes Flac and F8[1] is collinear with, rather than a circulation permutation of, the DNA of the mature Mu-1 bacteriophage. Observation of the position of the inserted Mu defines a point within the gene that has been inactivated (the lacI gene for Flac and a transfer gene in F8[1] in these particular instances). These examples illustrate a new, general method for physical gene mapping. The episome with Mu DNA inserted into F8[1] [i.e., F8[1](Mu)], although derived from a single colony, is heterogeneous in that a self-renatured sample shows a nonhomology loop of length 3.0 kb. This nonhomology loop, which has previously been observed in mature Mu-1 DNA, is due to an inversion.

Keywords: electron microscopy, episomes, Flac, E. coli

Full text

PDF
2823

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armentrout R. W., Rutberg L. Mapping of prophage and mature deoxyribonucleic acid from temperate Bacillus bacteriophage phi 105 by marker rescue. J Virol. 1970 Dec;6(6):760–767. doi: 10.1128/jvi.6.6.760-767.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boram W., Abelson J. Bacteriophage Mu integration: on the mechanism of Mu-induced mutations. J Mol Biol. 1971 Nov 28;62(1):171–178. doi: 10.1016/0022-2836(71)90137-9. [DOI] [PubMed] [Google Scholar]
  3. Martuscelli J., Taylor A. L., Cummings D. J., Chapman V. A., DeLong S. S., Cañedo L. Electron microscopic evidence for linear insertion of bacteriophage MU-1 in lysogenic bacteria. J Virol. 1971 Oct;8(4):551–563. doi: 10.1128/jvi.8.4.551-563.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Otsubo E. Transfer-defective mutants of sex factors in Escherichia coli. II. Deletion mutants of an F-prime and deletion mapping of cistrons involved in genetic transfer. Genetics. 1970 Feb;64(2):189–197. doi: 10.1093/genetics/64.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Scaife J. Episomes. Annu Rev Microbiol. 1967;21:601–638. doi: 10.1146/annurev.mi.21.100167.003125. [DOI] [PubMed] [Google Scholar]
  6. TAYLOR A. L. BACTERIOPHAGE-INDUCED MUTATION IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1963 Dec;50:1043–1051. doi: 10.1073/pnas.50.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES