Abstract
Kethoxal reacts with 30S ribosomal subunits to give totally inactive particles, as measured by in vitro protein synthesis. It is postulated that functional modification occurs at the binding site for transfer RNA since (a) loss of specific binding of transfer RNA, but not binding of messenger RNA, is simultaneous with loss of protein synthesis, and (b) loss of activity is inhibited by bound transfer RNA. By means of in vitro reconstitution and labeling techniques, it is found that loss of transfer RNA-binding activity is correlated with the modification of six or seven guanine residues in 16S RNA.
Keywords: 30S ribosomal subunits, tRNA binding site, guanine residues, reconstitution, protein synthesis
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bowman C. M., Dahlberg J. E., Ikemura T., Konisky J., Nomura M. Specific inactivation of 16S ribosomal RNA induced by colicin E3 in vivo. Proc Natl Acad Sci U S A. 1971 May;68(5):964–968. doi: 10.1073/pnas.68.5.964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Craven G. R., Gavin R., Fanning T. The transfer RNA binding site of the 30 S ribosome and the site of tetracycline inhibition. Cold Spring Harb Symp Quant Biol. 1969;34:129–137. doi: 10.1101/sqb.1969.034.01.019. [DOI] [PubMed] [Google Scholar]
- Eikenberry E. F., Bickle T. A., Traut R. R., Price C. A. Separation of large quantities of ribosomal subunits by zonal ultracentrifugation. Eur J Biochem. 1970 Jan;12(1):113–116. doi: 10.1111/j.1432-1033.1970.tb00827.x. [DOI] [PubMed] [Google Scholar]
- Helser T. L., Davies J. E., Dahlberg J. E. Change in methylation of 16S ribosomal RNA associated with mutation to kasugamycin resistance in Escherichia coli. Nat New Biol. 1971 Sep 1;233(35):12–14. doi: 10.1038/newbio233012a0. [DOI] [PubMed] [Google Scholar]
- Helser T. L., Davies J. E., Dahlberg J. E. Mechanism of kasugamycin resistance in Escherichia coli. Nat New Biol. 1972 Jan 5;235(53):6–9. doi: 10.1038/newbio235006a0. [DOI] [PubMed] [Google Scholar]
- Litt M., Hancock V. Kethoxal--a potentially useful reagent for the determination of nucleotide sequences in single-stranded regions of transfer ribonucleic acid. Biochemistry. 1967 Jun;6(6):1848–1854. doi: 10.1021/bi00858a036. [DOI] [PubMed] [Google Scholar]
- Litt M. Structural studies on transfer ribonucleic acid. I. Labeling of exposed guanine sites in yeast phenylalanine transfer ribonucleic acid with kethoxal. Biochemistry. 1969 Aug;8(8):3249–3253. doi: 10.1021/bi00836a017. [DOI] [PubMed] [Google Scholar]
- NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
- Noller H. F., Chang C., Thomas G., Aldridge J. Chemical modification of the transfer RNA and polyuridylic acid binding sites of Escherichia coli 30 s ribosomal subunits. J Mol Biol. 1971 Nov 14;61(3):669–679. doi: 10.1016/0022-2836(71)90071-4. [DOI] [PubMed] [Google Scholar]
- SIMON M. I., VANVUNAKIS H. THE DYE-SENSITIZED PHOTOOXIDATION OF PURINE AND PYRIMIDINE DERIVATIVES. Arch Biochem Biophys. 1964 Apr;105:197–206. doi: 10.1016/0003-9861(64)90253-x. [DOI] [PubMed] [Google Scholar]
- STAEHELIN M. Inactivation of virus nucleic acid with glyoxal derivatives. Biochim Biophys Acta. 1959 Feb;31(2):448–454. doi: 10.1016/0006-3002(59)90019-8. [DOI] [PubMed] [Google Scholar]
- Schaup H. W., Kurland C. G. Molecular interactions of ribosomal components. 3. Isolation of the RNA binding site for a ribosomal protein. Mol Gen Genet. 1972;114(4):350–357. doi: 10.1007/BF00267503. [DOI] [PubMed] [Google Scholar]
- Schaup H. W., Sogin M., Woese C. Characterization of an RNA "binding site" for a specific ribosomal protein of Escherichia coli. Mol Gen Genet. 1972;114(1):1–8. doi: 10.1007/BF00268740. [DOI] [PubMed] [Google Scholar]
- Senior B. W., Holland I. B. Effect of colicin E3 upon the 30S ribosomal subunit of Escherichia coli. Proc Natl Acad Sci U S A. 1971 May;68(5):959–963. doi: 10.1073/pnas.68.5.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro R., Hachmann J. The reaction of guanine derivatives with 1,2-dicarbonyl compounds. Biochemistry. 1966 Sep;5(9):2799–2807. doi: 10.1021/bi00873a004. [DOI] [PubMed] [Google Scholar]
- Staehelin T., Maglott D. M., Monro R. E. On the catalytic center of peptidyl transfer: a part of the 50 S ribosome structure. Cold Spring Harb Symp Quant Biol. 1969;34:39–48. doi: 10.1101/sqb.1969.034.01.008. [DOI] [PubMed] [Google Scholar]
- Traub P., Nomura M. Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc Natl Acad Sci U S A. 1968 Mar;59(3):777–784. doi: 10.1073/pnas.59.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traub P., Nomura M. Structure and function of Escherichia coli ribosomes. VI. Mechanism of assembly of 30 s ribosomes studied in vitro. J Mol Biol. 1969 Mar 28;40(3):391–413. doi: 10.1016/0022-2836(69)90161-2. [DOI] [PubMed] [Google Scholar]
- Traub P., Nomura M. Studies on the assembly of ribosomes in vitro. Cold Spring Harb Symp Quant Biol. 1969;34:63–67. doi: 10.1101/sqb.1969.034.01.010. [DOI] [PubMed] [Google Scholar]
- Zimmermann R. A., Muto A., Fellner P., Ehresmann C., Branlant C. Location of ribosomal protein binding sites on 16S ribosomal RNA. Proc Natl Acad Sci U S A. 1972 May;69(5):1282–1286. doi: 10.1073/pnas.69.5.1282. [DOI] [PMC free article] [PubMed] [Google Scholar]