Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Nov;69(11):3161–3164. doi: 10.1073/pnas.69.11.3161

Induction of Neuronal Functions: Acetylcholine-Induced Acetylcholinesterase Activity in Mouse Neuroblastoma Cells

Jane Harkins 1, Molly Arsenault 1, Kurt Schlesinger 1, Joseph Kates 1
PMCID: PMC389726  PMID: 4508310

Abstract

Addition of acetylcholine to growing cultures of mouse neuroblastoma cells induced a 37-fold increase in the specific activity of acetylcholinesterase (EC 3.1.1.7). Morphological changes, consisting of neurite-extensions, were also observed during the logarithmic phase of growth of cells stimulated with acetylcholine. A histochemical procedure for localization of acetylcholinesterase was used with the following results: (a) Cells differentiating by growth inhibition in serum-free medium do not stain positively for acetylcholinesterase, except when they have extended neurites, whereas all cells induced with acetylcholine, with or without neurites, stain positively for the enzyme. (b) The inverse relation between cell growth and induction of enzyme activity was demonstrated in nondividing cells at the center of a colony that do not incorporate thymidine into DNA and that stain positively for acetylcholinesterase, whereas actively dividing cells on the periphery of the colony do not stain for the enzyme. However, by addition of acetylcholine we were able to dissociate inhibition of cell growth from biochemical and morphological differentiation in mouse neuroblastoma cells.

Keywords: differentiation

Full text

PDF
3161

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Augusti-Tocco G., Sato G. Establishment of functional clonal lines of neurons from mouse neuroblastoma. Proc Natl Acad Sci U S A. 1969 Sep;64(1):311–315. doi: 10.1073/pnas.64.1.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blume A., Gilbert F., Wilson S., Farber J., Rosenberg R., Nirenberg M. Regulation of acetylcholinesterase in neuroblastoma cells. Proc Natl Acad Sci U S A. 1970 Oct;67(2):786–792. doi: 10.1073/pnas.67.2.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. EAGLE H. Nutrition needs of mammalian cells in tissue culture. Science. 1955 Sep 16;122(3168):501–514. doi: 10.1126/science.122.3168.501. [DOI] [PubMed] [Google Scholar]
  4. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  5. El-Badawi A., Schenk E. A. Histochemical methods for separate, consecutive and simultaneous demonstration of acetylcholinesterase and norepinephrine in cryostat sections. J Histochem Cytochem. 1967 Oct;15(10):580–588. doi: 10.1177/15.10.580. [DOI] [PubMed] [Google Scholar]
  6. Furmanski P., Silverman D. J., Lubin M. Expression of differentiated functions in mouse neuroblastoma mediated by dibutyryl-cyclic adenosine monophosphate. Nature. 1971 Oct 8;233(5319):413–415. doi: 10.1038/233413a0. [DOI] [PubMed] [Google Scholar]
  7. Harris A. J., Dennis M. J. Acetylcholine sensitivity and distribution on mouse neuroblastoma cells. Science. 1970 Feb 27;167(3922):1253–1255. doi: 10.1126/science.167.3922.1253. [DOI] [PubMed] [Google Scholar]
  8. Kates J. R., Winterton R., Schlessinger K. Induction of acetylcholinesterase activity in mouse neuroblastoma tissue culture cells. Nature. 1971 Jan 29;229(5283):345–347. doi: 10.1038/229345a0. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Prasad K. N., Vernadakis A. Morphological and biochemical study in x-ray- and dibutyryl cyclic AMP-induced differentiated neuroblastoma cells. Exp Cell Res. 1972 Jan;70(1):27–32. doi: 10.1016/0014-4827(72)90177-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES