Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Nov;69(11):3399–3403. doi: 10.1073/pnas.69.11.3399

Changes in Intrinsic Circular Dichroism of Several Homogeneous Anti-Type III Pneumococcal Antibodies on Binding of a Small Hapten

David A Holowka *, A Donny Strosberg ‡,, John W Kimball , Edgar Haber , Renata E Cathou *,§
PMCID: PMC389779  PMID: 4404497

Abstract

Three homogeneous antibodies against the capsular polysaccharide of Type III pneumococci of similar specificities and affinities were purified from a single bleeding of an individual rabbit and fractionated by isoelectric focusing. A comparison of the circular dichroic spectra of the three antibodies revealed differences among them, although the spectra were generally similar to those obtained previously for heterogeneous rabbit antibodies [Cathou, R. E., Kulcycki, A., Jr. & Haber, E. (1968) Biochemistry 7, 3958].

On binding of the hexasaccharide, -[→3)-β-D-glucuronic acid-(1→4)-β-D-glucose-(1-]3→, significant changes in all three circular dichroic spectra were observed. Since the oligosaccharide alone shows no transitions above 220 nm, these spectral changes can be attributed to changes in the intrinsic optical activity of the antibodies. Calculated difference circular dichroism spectra (of antibody minus that of antibody-hapten complex) of the three antibodies are different from each other, and resemble spectra of tryptophan and tyrosine derivatives. These changes in optical activity can be ascribed to changes in the asymmetric environments of aromatic chromophores directly in the combining site and/or to changes in orientation inside or beyond the site.

Since the hapten-antibody interactions are different in the three antibodies, as shown by the difference spectra, the structures of the combining sites are presumably also different. We have interpreted these observations to mean that a relatively simple ligand may be bound by several different complementary sites.

Keywords: hexasaccharide, isoelectric focusing, ligand binding, rabbit

Full text

PDF
3399

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashman R. F., Kaplan A. P., Metzger H. A search for conformational change on ligand binding in a human M macroglobulin. I. Circular dichroism and hydrogen exchange. Immunochemistry. 1971 Jul;8(7):627–641. doi: 10.1016/0019-2791(71)90203-5. [DOI] [PubMed] [Google Scholar]
  2. Awdeh Z. L., Askonas B. A., Williamson A. R. The homogeneous-gamma-G-immunoglobulin produced by mouse plasmacytoma 5563 and its subsequent heterogeneity in serum. Biochem J. 1967 Feb;102(2):548–553. doi: 10.1042/bj1020548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beychok S. Rotatory dispersion and circular dichroism. Annu Rev Biochem. 1968;37:437–462. doi: 10.1146/annurev.bi.37.070168.002253. [DOI] [PubMed] [Google Scholar]
  4. Björk I., Tanford C. Gross conformation of free polypeptide chains from rabbit immunoglobulin G. II. Light chain. Biochemistry. 1971 Apr 13;10(8):1280–1288. doi: 10.1021/bi00784a002. [DOI] [PubMed] [Google Scholar]
  5. Blake C. C., Koenig D. F., Mair G. A., North A. C., Phillips D. C., Sarma V. R. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature. 1965 May 22;206(4986):757–761. doi: 10.1038/206757a0. [DOI] [PubMed] [Google Scholar]
  6. CRUMPTON M. J., WILKINSON J. M. AMINO ACID COMPOSITIONS OF HUMAN AND RABBIT GAMMA-GLOBULINS AND OF THE FRAGMENTS PRODUCED BY REDUCTION. Biochem J. 1963 Aug;88:228–234. doi: 10.1042/bj0880228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Campbell J. H., Pappenheimer A. M., Jr Quantitative studies of the specificity of anti-pneumococcal polysaccharide antibodies, types 3 and 8. I. Isolation of oligosaccharides from acid and from enzymatic hydrolysates of S3 and S8. Immunochemistry. 1966 May;3(3):195–212. doi: 10.1016/0019-2791(66)90184-4. [DOI] [PubMed] [Google Scholar]
  8. Cathou R. E., Kulczycki A., Jr, Haber E. Structural features of gamma-immunoglobulin, antibody, and their fragments. Circular dichroism studies. Biochemistry. 1968 Nov;7(11):3958–3964. doi: 10.1021/bi00851a024. [DOI] [PubMed] [Google Scholar]
  9. Conway-Jacobs A., Schechter B., Sela M. Extrinsic Cotton effect and immunological properties of the p-azobenzenearsonate hapten attached to a helical amino acid copolymer. Biochemistry. 1970 Dec 8;9(25):4870–4875. doi: 10.1021/bi00827a007. [DOI] [PubMed] [Google Scholar]
  10. Dorrington K. J., Smith B. R. Conformational changes accompanying the dissociation and association of immunoglobulin-G subunits. Biochim Biophys Acta. 1972 Mar 15;263(1):70–81. doi: 10.1016/0005-2795(72)90160-2. [DOI] [PubMed] [Google Scholar]
  11. Edelman G. M., Cunningham B. A., Gall W. E., Gottlieb P. D., Rutishauser U., Waxdal M. J. The covalent structure of an entire gammaG immunoglobulin molecule. Proc Natl Acad Sci U S A. 1969 May;63(1):78–85. doi: 10.1073/pnas.63.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Freedman M. H., Painter R. H. Isolation and characterization of electrophoretically homogeneous rabbit antihapten antibody populations. I. Separation and properties of homogeneous anti-p-azophenyltrimethyl-ammonium antibodies. J Biol Chem. 1971 Jul 10;246(13):4340–4349. [PubMed] [Google Scholar]
  13. Ghose A. C., Jirgensons B. Circular dichroism studies on the variable and constant halves of kappa-type Bence-Jones proteins. Biochim Biophys Acta. 1971 Oct;251(1):14–20. doi: 10.1016/0005-2795(71)90053-5. [DOI] [PubMed] [Google Scholar]
  14. Haber E. Antibodies of restricted heterogeneity for structural study. Fed Proc. 1970 Jan-Feb;29(1):66–71. [PubMed] [Google Scholar]
  15. Harisdangkul V., Kabat E. A., McDonough R. J., Sigel M. M. A protein in normal nurse shark serum which reacts specifically with fructosans. II. Physicochemical studies. J Immunol. 1972 May;108(5):1259–1270. [PubMed] [Google Scholar]
  16. Johnson L. N., Phillips D. C. Structure of some crystalline lysozyme-inhibitor complexes determined by X-ray analysis at 6 Angstrom resolution. Nature. 1965 May 22;206(4986):761–763. doi: 10.1038/206761a0. [DOI] [PubMed] [Google Scholar]
  17. Kimball J. W., Pappenheimer A. M., Jr, Jaton J. C. The response in rabbits to prolonged immunization with type 3 pneumococci. J Immunol. 1971 May;106(5):1177–1184. [PubMed] [Google Scholar]
  18. Koshland D. E., Jr, Neet K. E. The catalytic and regulatory properties of enzymes. Annu Rev Biochem. 1968;37:359–410. doi: 10.1146/annurev.bi.37.070168.002043. [DOI] [PubMed] [Google Scholar]
  19. Krause R. M. Experimental approaches to homogenous antibody populations. Factors controlling the occurrence of antibodies with uniform properties. Fed Proc. 1970 Jan-Feb;29(1):59–65. [PubMed] [Google Scholar]
  20. Metzger H. The antigen receptor problem. Annu Rev Biochem. 1970;39:889–928. doi: 10.1146/annurev.bi.39.070170.004325. [DOI] [PubMed] [Google Scholar]
  21. NISONOFF A., PRESSMAN D. Heterogeneity and average combining constants of antibodies from individual rabbits. J Immunol. 1958 Jun;80(6):417–428. [PubMed] [Google Scholar]
  22. Painter R. H., Freedman M. H. Isolation and characterization of electrophoretically homogeneous rabbit antihapten antibody populations. II. A survey of the isoelectric properties of antihapten antibodies directed against charged and uncharged haptens. J Biol Chem. 1971 Nov;246(21):6692–6699. [PubMed] [Google Scholar]
  23. Pflumm M. N., Wang J. L., Edelman G. M. Conformational changes in concanavalin A. J Biol Chem. 1971 Jul 10;246(13):4369–4370. [PubMed] [Google Scholar]
  24. Pincus J. H., Jaton J. C., Bloch K. J., Haber E. Antibodies to type III and type VIII pneumococcal polysaccharides: evidence for restricted structural heterogeneity in hyperimmunized rabbits. J Immunol. 1970 May;104(5):1143–1148. [PubMed] [Google Scholar]
  25. Pincus J. H., Jaton J. C., Bloch K. J., Haber E. Properties of structurally restricted antibody to type VIII pneumococcal polysaccharide. J Immunol. 1970 May;104(5):1149–1154. [PubMed] [Google Scholar]
  26. Reid V., Glaser M., Kennett R., Singer S. J. Extrinsic Cotton effects in hapten--carrier and hapten--antibody interactions. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1184–1187. doi: 10.1073/pnas.68.6.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rockey J. M., Dorrington K. J., Montgomery K. J. Induced optical activity of 2,4-dinitrophenyl-lysine specifically bound to mouse MOPC-315 myeloma protein. Nature. 1971 Jul 16;232(5307):192–194. doi: 10.1038/232192a0. [DOI] [PubMed] [Google Scholar]
  28. Simmons N. S., Glazer A. N. An analysis of the tyrosine circular dichroism bands in ribonuclease. J Am Chem Soc. 1967 Sep 13;89(19):5040–5042. doi: 10.1021/ja00995a037. [DOI] [PubMed] [Google Scholar]
  29. Singer S. J., Doolittle R. F. Antibody active sites and immunoglobulin molecules. Science. 1966 Jul 1;153(3731):13–25. doi: 10.1126/science.153.3731.13. [DOI] [PubMed] [Google Scholar]
  30. Steiner L. A., Lowey S. Optical rotatory dispersion studies of rabbit gamma-G-immunoglobulin and its papain fragments. J Biol Chem. 1966 Jan 10;241(1):231–240. [PubMed] [Google Scholar]
  31. Strickland E. H., Horwitz J., Billups C. Fine structure in the near-ultraviolet circular dichroism and absorption spectra of tryptophan derivatives and chymotrypsinogen A at 77 degrees K. Biochemistry. 1969 Aug;8(8):3205–3213. doi: 10.1021/bi00836a012. [DOI] [PubMed] [Google Scholar]
  32. Vesterberg O., Wadström T., Vesterberg K., Svensson H., Malmgren B. Studies on extracellular PROTEINS FROM Staphylococcus aureus. I. Separation and characterization of enzymes and toxins by isoelectric focusing. Biochim Biophys Acta. 1967 Apr 11;133(3):435–445. doi: 10.1016/0005-2795(67)90547-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES