Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Nov;69(11):3490–3492. doi: 10.1073/pnas.69.11.3490

Resolution and Reconstitution of the Phosphatidate-Synthesizing System of Rat-Liver Microsomes

Satoshi Yamashita 1, Kohei Hosaka 1, Shosaku Numa 1
PMCID: PMC389799  PMID: 4508337

Abstract

The phosphatidate-synthesizing system of rat-liver microsomes was resolved into two component enzymes, glycerolphosphate acyltransferase and 1-acylglycerolphosphate acyltransferase. The resolution is effected by sucrose density gradient centrifugation in the presence of a nonionic detergent, Triton X-100. Combination of both enzymes results in reconstitution of the phosphatidate-synthesizing system. These results establish that two distinct enzymes, glycerolphosphate acyltransferase and 1-acylglycerolphosphate acyltransferase, are required for synthesis of phosphatidic acid from sn-glycerol 3-phosphate.

Furthermore, the 1-acylglycerolphosphate acyltransferase preparation efficiently uses unsaturated (or saturated) fatty acyl-CoA as acyl donor. Our previous studies showed that the glycerolphosphate acyltransferase preparation catalyzes formation of 1-acylglycerol 3-phosphate, using preferentially saturated fatty acyl-CoA as acyl donor. These findings indicate that the reconstituted system is capable of yielding phosphatidic acid with an asymmetric fatty acid distribution.

Keywords: Triton X-100, sucrose density gradient centrifugation, glycerolphosphate acyltransferase, 1-acylglycerolphosphate acyltransferase, asymmetric fatty acid distribution

Full text

PDF
3490

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cronan J. E., Jr, Ray T. K., Vagelos P. R. Selection and characterization of an E. coli mutant defective in membrane lipid biosynthesis. Proc Natl Acad Sci U S A. 1970 Mar;65(3):737–744. doi: 10.1073/pnas.65.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eibl H., Hill E. E., Lands W. E. The subcellular distribution of acyltransferases which catalyze the synthesis of phosphoglycerides. Eur J Biochem. 1969 Jun;9(2):250–258. doi: 10.1111/j.1432-1033.1969.tb00602.x. [DOI] [PubMed] [Google Scholar]
  3. Elovson J., Akesson B., Arvidson G. Positional specificity of liver 1,2-diglyceride biosynthesis in vivo. Biochim Biophys Acta. 1969 Jan 21;176(1):214–217. doi: 10.1016/0005-2760(69)90095-2. [DOI] [PubMed] [Google Scholar]
  4. Hajra A. K., Agranoff B. W. Acyl dihydroxyacetone phosphate. Characterization of a 32P-labeled lipid from guinea pig liver mitochondria. J Biol Chem. 1968 Apr 10;243(7):1617–1622. [PubMed] [Google Scholar]
  5. Hechemy K., Goldfine H. Isolation and characterization of a temperature-sensitive mutant of Escherichia coli with a lesion in the acylation of lysophosphatidic acid. Biochem Biophys Res Commun. 1971 Jan 22;42(2):245–251. doi: 10.1016/0006-291x(71)90094-5. [DOI] [PubMed] [Google Scholar]
  6. Hill E. E., Husbands D. R., Lands W. E. The selective incorporation of 14C-glycerol into different species of phosphatidic acid, phosphatidylethanolamine, and phosphatidylcholine. J Biol Chem. 1968 Sep 10;243(17):4440–4451. [PubMed] [Google Scholar]
  7. Hill E. E., Lands W. E. Incorporation of long-chain and polyunsaturated acids into phosphatidate and phosphatidylcholine. Biochim Biophys Acta. 1968 May 1;152(3):645–648. doi: 10.1016/0005-2760(68)90109-4. [DOI] [PubMed] [Google Scholar]
  8. KENNEDY E. P. Biosynthesis of complex lipids. Fed Proc. 1961 Dec;20:934–940. [PubMed] [Google Scholar]
  9. KENNEDY E. P. Synthesis of phosphatides in isolated mitochondria. J Biol Chem. 1953 Mar;201(1):399–412. [PubMed] [Google Scholar]
  10. KORNBERG A., PRICER W. E., Jr Enzymatic esterification of alpha-glycerophosphate by long chain fatty acids. J Biol Chem. 1953 Sep;204(1):345–357. [PubMed] [Google Scholar]
  11. LANDS W. E., HART P. METABOLISM OF GLYCEROLIPIDS. VI. SPECIFICITIES OF ACYL COENZYME A: PHOSPHOLIPID ACYLTRANSFERASES. J Biol Chem. 1965 May;240:1905–1911. [PubMed] [Google Scholar]
  12. LANDS W. E., HART P. METABOLISM OF GLYCEROLIPIDS: V. METABOLISM OF PHOSPHATIDIC ACID. J Lipid Res. 1964 Jan;5:81–87. [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Okuyama H., Eibl H., Lands W. E. Acyl coenzyme A:2-acyl-sn-glycerol-3-phosphate acyltransferase activity in rat liver microsomes. Biochim Biophys Acta. 1971 Nov 5;248(2):263–273. doi: 10.1016/0005-2760(71)90014-2. [DOI] [PubMed] [Google Scholar]
  15. Okuyama H., Lands W. E. Variable selectivities of acyl coenzyme A:monoacylglycerophosphate acyltransferases in rat liver. J Biol Chem. 1972 Mar 10;247(5):1414–1423. [PubMed] [Google Scholar]
  16. Possmayer F., Scherphof G. L., Dubbelman T. M., van Golde L. M., van Deenen L. L. Positional specificity of saturated and unsaturated fatty acids in phosphatidic acid from rat liver. Biochim Biophys Acta. 1969 Jan 21;176(1):95–110. doi: 10.1016/0005-2760(69)90078-2. [DOI] [PubMed] [Google Scholar]
  17. Ray T. K., Cronan J. E., Jr, Mavis R. D., Vagelos P. R. The specific acylation of glycerol 3-phosphate to monoacylglycerol 3-phosphate in Escherichia coli. Evidence for a single enzyme conferring this specificity. J Biol Chem. 1970 Dec 10;245(23):6442–6448. [PubMed] [Google Scholar]
  18. Stoffel W., De Tomás M. E., Schiefer H. G. Die enzymatische Acylierung von Lysophosphatidsäure, gesättigtem und ungesättigtem Lysolecithin. Hoppe Seylers Z Physiol Chem. 1967 Jul;348(7):882–890. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES