Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Dec;69(12):3542–3546. doi: 10.1073/pnas.69.12.3542

Alteration of Nucleoside Transport of Chinese Hamster Cells by Dibutyryl Adenosine 3′:5′-Cyclic Monophosphate

Peter V Hauschka 1, Leighton P Everhart 1, Robert W Rubin 1
PMCID: PMC389817  PMID: 4345504

Abstract

Cultured Chinese hamster ovary cells showed no significant change in generation time or fraction in the S-phase in the presence of 1 mM N6,O2′-dibutyryl adenosine 3′:5′-cyclic monophosphate. Growth continued for at least two generations after expression of the morphological transformation induced by this cyclic AMP analog. Despite identical growth rates, apparent rates of DNA and RNA synthesis (incorporation of [3H]-thymidine or [3H]uridine) were reduced up to 15-fold in log phase by 1 mM cyclic nucleotide. [3H]Deoxycytidine incorporation was much less sensitive to dibutyryl cyclic AMP. Uptake studies with [3H]thymidine demonstrated an inhibition of transport rate dependent on the concentration of dibutyryl cyclic AMP in the growth medium. The rate of thymidine uptake at 1° was decreased 21-fold by 1 mM cyclic nucleotide; half-maximal inhibition occurred at 6 μM. At 37°, the pool size of acid-soluble thymidylate was strongly reduced by 1 mM cyclic nucleotide, and synergistic reduction of the pool size was found with 0.5 mM aminophylline. Phosphorylation of the acid-soluble intracellular label was unaffected by dibutyryl cyclic AMP. Inhibition of thymidine uptake is attributed to an observed decrease in thymidine kinase activity caused by growth in 1 mM dibutyryl cyclic AMP, and possibly to a simultaneous alteration in membrane permeability. Kinase-facilitated uptake of other metabolites may be regulated in a similar fashion by cyclic AMP.

Keywords: thymidine and uridine uptake, thymidine kinase, DNA and RNA synthesis

Full text

PDF
3542

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. L. Phosphorylation of tritiated thymidine by L929 mouse fibroblasts. Exp Cell Res. 1969 Jul;56(1):49–54. doi: 10.1016/0014-4827(69)90392-9. [DOI] [PubMed] [Google Scholar]
  2. BOLLUM F. J., POTTER V. R. Nucleic acid metabolism in regenerating rat liver. VI. Soluble enzymes which convert thymidine to thymidine phosphates and DNA. Cancer Res. 1959 Jun;19(5):561–565. [PubMed] [Google Scholar]
  3. BRESNICK E., KARJALA R. J. END-PRODUCT INHIBITION OF THYMIDINE KINASE ACTIVITY IN NORMAL AND LEUKEMIC HUMAN LEUKOCYTES. Cancer Res. 1964 Jun;24:841–846. [PubMed] [Google Scholar]
  4. Cory J. G., Whitford T. W., Jr Ribonucleotide reductase and DNA synthesis in Ehrlich ascites tumor cells. Cancer Res. 1972 Jun;32(6):1301–1306. [PubMed] [Google Scholar]
  5. Cunningham D. D., Pardee A. B. Transport changes rapidly initiated by serum addition to "contact inhibited" 3T3 cells. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1049–1056. doi: 10.1073/pnas.64.3.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Crombrugghe B., Chen B., Gottesman M., Pastan I., Varmus H. E., Emmer M., Perlman R. L. Regulation of lac mRNA synthesis in a soluble cell-free system. Nat New Biol. 1971 Mar 10;230(10):37–40. doi: 10.1038/newbio230037a0. [DOI] [PubMed] [Google Scholar]
  7. Enger M. D., Tobey R. A. Effects of isoleucine deficiency on nucleic acid and protein metabolism in cultured Chinese hamster cells. Continued ribonucleic acid and protein synthesis in the absence of deoxyribonucleic acid synthesis. Biochemistry. 1972 Jan 18;11(2):269–277. doi: 10.1021/bi00752a019. [DOI] [PubMed] [Google Scholar]
  8. Goodman D. B., Rasmussen H., DiBella F., Guthrow C. E., Jr Cyclic adenosine 3':5'-monophosphate-stimulated phosphorylation of isolated neurotubule subunits. Proc Natl Acad Sci U S A. 1970 Oct;67(2):652–659. doi: 10.1073/pnas.67.2.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hare J. D. Quantitative aspects of thymidine uptake into the acid-souble pool of normal and polyoma-transformed hamster cells. Cancer Res. 1970 Mar;30(3):684–691. [PubMed] [Google Scholar]
  10. Hsie A. W., Jones C., Puck T. T. Further changes in differentiation state accompanying the conversion of Chinese hamster cells of fibroblastic form by dibutyryl adenosine cyclic 3':5'-monophosphate and hormones. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1648–1652. doi: 10.1073/pnas.68.7.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hsie A. W., Puck T. T. Morphological transformation of Chinese hamster cells by dibutyryl adenosine cyclic 3':5'-monophosphate and testosterone. Proc Natl Acad Sci U S A. 1971 Feb;68(2):358–361. doi: 10.1073/pnas.68.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. JACQUEZ J. A. Transport and enzymic splitting of pyrimidine nucleosides in Ehrlich cells. Biochim Biophys Acta. 1962 Aug 20;61:265–277. doi: 10.1016/0926-6550(62)90089-0. [DOI] [PubMed] [Google Scholar]
  13. KIT S., VALLADARES Y., DUBBS D. R. EFFECTS OF AGE OF CULTURE AND VACCINIA INFECTION ON URIDINE KINASE ACTIVITY OF L-CELLS. Exp Cell Res. 1964 Apr;34:257–265. doi: 10.1016/0014-4827(64)90362-3. [DOI] [PubMed] [Google Scholar]
  14. Konijn T. M., Van De Meene J. G., Bonner J. T., Barkley D. S. The acrasin activity of adenosine-3',5'-cyclic phosphate. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1152–1154. doi: 10.1073/pnas.58.3.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Landau T., Sachs L. Characterization of the inducer required for the development of macrophage and granulocyte colonies. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2540–2544. doi: 10.1073/pnas.68.10.2540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Langan T. A. Histone phosphorylation: stimulation by adenosine 3',5'-monophosphate. Science. 1968 Nov 1;162(3853):579–580. doi: 10.1126/science.162.3853.579. [DOI] [PubMed] [Google Scholar]
  17. Lindberg U., Nordenskjöld B. A., Reichard P., Skoog L. Thymidine phosphate pools and DNA synthesis after polyoma infection of mouse embryo cells. Cancer Res. 1969 Aug;29(8):1498–1506. [PubMed] [Google Scholar]
  18. Masui H., Garren L. D. Inhibition of replication in functional mouse adrenal tumor cells by adrenocorticotropic hormone mediated by adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3206–3210. doi: 10.1073/pnas.68.12.3206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miyamoto E., Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. 3. Purification and properties of adenosine 3',5'-monophosphate-dependent protein kinase from bovine brain. J Biol Chem. 1969 Dec 10;244(23):6395–6402. [PubMed] [Google Scholar]
  20. Nordenskjöld B. A., Skoog L., Brown N. C., Reichard P. Deoxyribonucleotide pools and deoxyribonucleic acid synthesis in cultured mouse embryo cells. J Biol Chem. 1970 Oct 25;245(20):5360–5368. [PubMed] [Google Scholar]
  21. Okuda H., Arima T., Hashimoto T., Fujii S. Multiple forms of deoxythymidine kinase in various tissues. Cancer Res. 1972 Apr;32(4):791–794. [PubMed] [Google Scholar]
  22. Otten J., Johnson G. S., Pastan I. Cyclic AMP levels in fibroblasts: relationship to growth rate and contact inhibition of growth. Biochem Biophys Res Commun. 1971 Sep;44(5):1192–1198. doi: 10.1016/s0006-291x(71)80212-7. [DOI] [PubMed] [Google Scholar]
  23. Peach M. J. Stimulation of release of adrenal catecholamine by adenosine 3':5'-cyclic monophosphate and theophylline in the absence of extracellular Ca 2+ . Proc Natl Acad Sci U S A. 1972 Apr;69(4):834–836. doi: 10.1073/pnas.69.4.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Plagemann P. G. Choline metabolism and membrane formation in rat hepatoma cells grown in suspension culture. II. Phosphatidylcholine synthesis during growth cycle and fluctuation of mitochondrial density. J Cell Biol. 1969 Sep;42(3):766–781. doi: 10.1083/jcb.42.3.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Plagemann P. G. Nucleotide pools of Novikoff rat hepatoma cells growing in suspension culture. II. Independent nucleotide pools for nucleic acid synthesis. J Cell Physiol. 1971 Apr;77(2):241–248. doi: 10.1002/jcp.1040770213. [DOI] [PubMed] [Google Scholar]
  26. Plagemann P. G., Roth M. F. Permeation as the rate-limiting step in the phosphorylation of uridine and choline and their incorporation into macromolecules by Novikoff hepatoma cells. Competitive inhibition by phenethyl alcohol, persantin, and adenosine. Biochemistry. 1969 Dec;8(12):4782–4789. doi: 10.1021/bi00840a020. [DOI] [PubMed] [Google Scholar]
  27. Plagemann P. G., Ward G. A., Mahy B. W., Korbecki M. Relationship between uridine kinase activity and rate of incorporation of uridine into acid-soluble pool and into RNA during growth cycle of rat hepatoma cells. J Cell Physiol. 1969 Jun;73(3):233–249. doi: 10.1002/jcp.1040730308. [DOI] [PubMed] [Google Scholar]
  28. Prince W. T., Berridge M. J., Rasmussen H. Role of calcium and adenosine-3':5'-cyclic monophosphate in controlling fly salivary gland secretion. Proc Natl Acad Sci U S A. 1972 Mar;69(3):553–557. doi: 10.1073/pnas.69.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Scholtissek C. Studies on the uptake of nucleic acid precursors into cells in tissue culture. Biochim Biophys Acta. 1968 Jun 24;158(3):435–447. doi: 10.1016/0304-4165(68)90297-3. [DOI] [PubMed] [Google Scholar]
  30. Schuster G. S., Hare J. D. The role of phosphorylation in the uptake of thymidine in mammalian cells. In Vitro. 1971 May-Jun;6(6):427–436. doi: 10.1007/BF02616044. [DOI] [PubMed] [Google Scholar]
  31. Sheppard J. R. Difference in the cyclic adenosine 3',5'-monophosphate levels in normal and transformed cells. Nat New Biol. 1972 Mar 1;236(61):14–16. doi: 10.1038/newbio236014a0. [DOI] [PubMed] [Google Scholar]
  32. Sheppard J. R. Restoration of contact-inhibited growth to transformed cells by dibutyryl adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1316–1320. doi: 10.1073/pnas.68.6.1316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tobey R. A., Ley K. D. Regulation of initiation of DNA synthesis in Chinese hamster cells. I. Production of stable, reversible G1-arrested populations in suspension culture. J Cell Biol. 1970 Jul;46(1):151–157. doi: 10.1083/jcb.46.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. WEISSMAN S. M., SMELLIE R. M., PAUL J. Studies on the biosynthesis of deoxyribonucleic acid by extracts of mammalian cells. IV. The phosphorylation of thymidine. Biochim Biophys Acta. 1960 Dec 4;45:101–110. doi: 10.1016/0006-3002(60)91430-x. [DOI] [PubMed] [Google Scholar]
  35. Ward G. A., Plagemann P. G. Fluctuations of DNA-dependent RNA polymerase and synthesis of macromolecules during the growth cycle of Novikoff rat hepatoma cells in suspension culture. J Cell Physiol. 1969 Jun;73(3):213–231. doi: 10.1002/jcp.1040730307. [DOI] [PubMed] [Google Scholar]
  36. Weber M. J., Rubin H. Uridine transport and RNA synthesis in growing and in density-inhibited animal cells. J Cell Physiol. 1971 Apr;77(2):157–168. doi: 10.1002/jcp.1040770205. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES