Abstract
RNA polymerase has been purified from vegetative cells of Bacillus brevis and resolved into “core” enzyme and sigma factor. The purified enzyme is rapidly inactivated by incubation at low temperatures in the presence of 1-2 mM ATP, dATP, or NAD+, while other nucleotides at this concentration have little or no effect. Inactivation is not accompanied by the incorporation of an adenylyl or phosphoryl moiety into RNA polymerase; nevertheless, it is essentially irreversible. DNA, high concentrations of glycerol, as well as low concentrations (1 mM) of orthophosphate protect RNA polymerase from the nucleotide-dependent inactivation.
A similar inactivation of RNA polymerase in the presence of ATP is observed with crude preparations from Bacillus subtilis and Bacillus polymyxa. This phenomenon may represent a novel mode of regulation of transcription that does not involve a covalent modification of RNA polymerase or its interaction with other protein factors, but rather is due to a structural transition to an inactive form induced by small molecules.
Keywords: ATP, dATP, NAD+
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alpers J. B., Paulus H., Bazylewicz G. A. ATP-catalyzed preconditioning of phosphofructokinase. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2937–2940. doi: 10.1073/pnas.68.12.2937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson W. B., Stadtman E. R. Glutamine synthetase deadenylation: a phosphorolytic reaction yielding ADP as nucleotide product. Biochem Biophys Res Commun. 1970 Nov 9;41(3):704–709. doi: 10.1016/0006-291x(70)90070-7. [DOI] [PubMed] [Google Scholar]
- Avila J., Hermoso J. M., Vinuela E., Salas M. Purification and properties of DNA-dependent RNA polymerase from Bacillus subtilis vegetative cells. Eur J Biochem. 1971 Aug 25;21(4):526–535. doi: 10.1111/j.1432-1033.1971.tb01498.x. [DOI] [PubMed] [Google Scholar]
- BERNS K. I., THOMAS C. A., Jr ISOLATION OF HIGH MOLECULAR WEIGHT DNA FROM HEMOPHILUS INFLUENZAE. J Mol Biol. 1965 Mar;11:476–490. doi: 10.1016/s0022-2836(65)80004-3. [DOI] [PubMed] [Google Scholar]
- Babinet C. A new method for the purification of RNA-polymerase. Biochem Biophys Res Commun. 1967 Mar 21;26(6):639–644. doi: 10.1016/s0006-291x(67)80119-0. [DOI] [PubMed] [Google Scholar]
- Biswas C., Gray E., Paulus H. Multivalent feedback inhibition of aspartokinase in Bacillus polymyxa. 3. Purification and subunit structure of the enzyme. J Biol Chem. 1970 Oct 10;245(19):4900–4906. [PubMed] [Google Scholar]
- Burgess R. R., Travers A. A., Dunn J. J., Bautz E. K. Factor stimulating transcription by RNA polymerase. Nature. 1969 Jan 4;221(5175):43–46. doi: 10.1038/221043a0. [DOI] [PubMed] [Google Scholar]
- CHAMBERLIN M., BERG P. MECHANISM OF RNA POLYMERASE ACTION: CHARACTERIZATION OF THE DNA-DEPENDENT SYNTHESIS OF POLYADENYLIC ACID. J Mol Biol. 1964 May;8:708–726. doi: 10.1016/s0022-2836(64)80120-0. [DOI] [PubMed] [Google Scholar]
- Chamberlin M., McGrath J., Waskell L. New RNA polymerase from Escherichia coli infected with bacteriophage T7. Nature. 1970 Oct 17;228(5268):227–231. doi: 10.1038/228227a0. [DOI] [PubMed] [Google Scholar]
- Chelala C. A., Hirschbein L., Torres H. N. Interconvertible forms of Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A. 1971 Jan;68(1):152–154. doi: 10.1073/pnas.68.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Crombrugghe E., Chen B., Anderson W. B., Gottesman M. E., Perlman R. L., Pastan I. Role of cyclic adenosine 3',5'-monophosphate and the cyclic adenosine 3',5'-monophosphate receptor protein in the initiation of lac transcription. J Biol Chem. 1971 Dec 10;246(23):7343–7348. [PubMed] [Google Scholar]
- FOX C. F., GUMPORT R. I., WEISS S. B. THE ENZYMATIC SYNTHESIS OF RIBONUCLEIC ACID. V. THE INTERACTION OF RIBONUCLEIC ACID POLYMERASE WITH NUCLEIC ACIDS. J Biol Chem. 1965 May;240:2101–2109. [PubMed] [Google Scholar]
- Gilbert W., Müller-Hill B. The lac operator is DNA. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2415–2421. doi: 10.1073/pnas.58.6.2415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Losick R., Shorenstein R. G., Sonenshein A. L. Structural alteration of RNA polymerase during sporulation. Nature. 1970 Aug 29;227(5261):910–913. doi: 10.1038/227910a0. [DOI] [PubMed] [Google Scholar]
- Maia J. C.C., Kerjan P., Szulmajster J. DNA-dependent RNA polymerase from vegetative cells and from spores of Bacillus subtilis. IV. Subunit composition. FEBS Lett. 1971 Mar 22;13(5):269–274. doi: 10.1016/0014-5793(71)80238-7. [DOI] [PubMed] [Google Scholar]
- Olivera B. M., Lehman I. R. Diphosphopyridine nucleotide: a cofactor for the polynucleotide-joining enzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1700–1704. doi: 10.1073/pnas.57.6.1700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paulus H., Alpers J. B. Preconditioning: an obligatory step in the biosynthesis of oligomeric enzymes and its promotion by allosteric ligands. Enzyme. 1971;12(4):385–401. doi: 10.1159/000459564. [DOI] [PubMed] [Google Scholar]
- SCHILDKRAUT C. L., MARMUR J., DOTY P. The formation of hybrid DNA molecules and their use in studies of DNA homologies. J Mol Biol. 1961 Oct;3:595–617. doi: 10.1016/s0022-2836(61)80024-7. [DOI] [PubMed] [Google Scholar]
- SINGER M. F., GUSS J. K. The dependence of reactions catalyzed by polynucleotide phosphorylase on oligonucleotides. J Biol Chem. 1962 Jan;237:182–189. [PubMed] [Google Scholar]
- Weiss B., Richardson C. C. Enzymatic breakage and joining of deoxyribonucleic acid, I. Repair of single-strand breaks in DNA by an enzyme system from Escherichia coli infected with T4 bacteriophage. Proc Natl Acad Sci U S A. 1967 Apr;57(4):1021–1028. doi: 10.1073/pnas.57.4.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
