Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Dec;69(12):3606–3610. doi: 10.1073/pnas.69.12.3606

Positive Control of Endolysin Synthesis In Vitro by the Gene N Protein of Phage λ

Jack Greenblatt 1,*
PMCID: PMC389831  PMID: 4509321

Abstract

Positive control in vitro by gene N protein of bacteriophage λ was demonstrated. λ DNA was used to direct in vitro synthesis of λ endolysin in a cell-free protein-synthesizing preparation derived from Escherichia coli. The endolysin synthesis depends on the concomitant in vitro synthesis of λ gene N protein. When λ N- DNA was used to direct the cell-free preparation, endolysin was made only if extract was added from cells in which a λ prophage had been induced. The use of various prophage deletion strains proved that if this stimulating activity made in vivo is coded by a known λ gene, it must be coded by gene N. The ability to stimulate endolysin synthesis in vitro on a λ N- DNA template, therefore, constitutes an assay for N protein.

Keywords: N protein assay, deletion mapping, N protein synthesis

Full text

PDF
3606

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Butler B., Echols H. Regulation of bacteriophage lambda development by gene N: properties of a mutation that bypasses N control of late protein synthesis. Virology. 1970 Feb;40(2):212–222. doi: 10.1016/0042-6822(70)90396-x. [DOI] [PubMed] [Google Scholar]
  2. CAMPBELL A. Sensitive mutants of bacteriophage lambda. Virology. 1961 May;14:22–32. doi: 10.1016/0042-6822(61)90128-3. [DOI] [PubMed] [Google Scholar]
  3. Court D., Sato K. Studies of novel transducing variants of lambda: dispensability of genes N and Q. Virology. 1969 Oct;39(2):348–352. doi: 10.1016/0042-6822(69)90060-9. [DOI] [PubMed] [Google Scholar]
  4. Dahl D., Soller A., Calef E. Functional behavior of lambda cry. J Mol Biol. 1968 Mar 28;32(3):638–658. doi: 10.1016/0022-2836(68)90348-3. [DOI] [PubMed] [Google Scholar]
  5. Dambly C., Couturier M. A minor Q-independent pathway for the expression of the late genes in bacteriophage lambda. Mol Gen Genet. 1971;113(3):244–250. doi: 10.1007/BF00339545. [DOI] [PubMed] [Google Scholar]
  6. Dambly C., Couturier M., Thomas R. Control of development in temperate bacteriophages. II. Control of lysozyme synthesis. J Mol Biol. 1968 Feb 28;32(1):67–81. doi: 10.1016/0022-2836(68)90146-0. [DOI] [PubMed] [Google Scholar]
  7. Dove W. F. Action of the lambda chromosome. I. Control of functions late in bacteriophage development. J Mol Biol. 1966 Aug;19(1):187–201. doi: 10.1016/s0022-2836(66)80060-8. [DOI] [PubMed] [Google Scholar]
  8. Eisen H., Brachet P., Pereira da Silva L., Jacob F. Regulation of repressor expression in lambda. Proc Natl Acad Sci U S A. 1970 Jul;66(3):855–862. doi: 10.1073/pnas.66.3.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ghysen A., Pironio M. Relationship between the N function of bacteriophage lambda and host RNA polymerase. J Mol Biol. 1972 Mar 28;65(2):259–272. doi: 10.1016/0022-2836(72)90281-1. [DOI] [PubMed] [Google Scholar]
  10. Greenblatt J., Schleif R. Arabinose C protein: regulation of the arabinose operon in vitro. Nat New Biol. 1971 Oct 6;233(40):166–170. doi: 10.1038/newbio233166a0. [DOI] [PubMed] [Google Scholar]
  11. Grodzicker T., Arditti R. R., Eisen H. Establishment of repression by lambdoid phage in catabolite activator protein and adenylate cyclase mutants of Escherichia coli. Proc Natl Acad Sci U S A. 1972 Feb;69(2):366–370. doi: 10.1073/pnas.69.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Herskowitz I., Signer E. R. A site essential for expression of all late genes in bacteriophage lambda. J Mol Biol. 1970 Feb 14;47(3):545–556. doi: 10.1016/0022-2836(70)90321-9. [DOI] [PubMed] [Google Scholar]
  13. Hopkins N. Bypassing a positive regulator: isolation of a lambda mutant that does not require N product to grow. Virology. 1970 Feb;40(2):223–229. doi: 10.1016/0042-6822(70)90397-1. [DOI] [PubMed] [Google Scholar]
  14. Howard B. D. Phage lambda mutants deficient in r-II exclusion. Science. 1967 Dec 22;158(3808):1588–1589. doi: 10.1126/science.158.3808.1588. [DOI] [PubMed] [Google Scholar]
  15. Konrad M. W. Dependence of "early" lambda bacteriophage RNA synthesis on bacteriophage-directed protein synthesis. Proc Natl Acad Sci U S A. 1968 Jan;59(1):171–178. doi: 10.1073/pnas.59.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kourilsky P., Marcaud L., Sheldrick P., Luzzati D., Gros F. Studies of the messenger RNA of bacteriophage lambda, I. Various species synthesized early after induction of the prophage. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1013–1020. doi: 10.1073/pnas.61.3.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kumar S., Bovre K., Guha A., Hradecna Z., Maher V. R., Szybalski W. Orientation and control of transcription in E. coli phage lambda. Nature. 1969 Mar 1;221(5183):823–825. doi: 10.1038/221823a0. [DOI] [PubMed] [Google Scholar]
  18. Luzzati D. Regulation of lambda exonuclease synthesis: role of the N gene product and lambda repressor. J Mol Biol. 1970 Apr 28;49(2):515–519. doi: 10.1016/0022-2836(70)90261-5. [DOI] [PubMed] [Google Scholar]
  19. Nijkamp H. J., Bovre K., Szybalski W. Controls of rightward transcription in coliphage lambda. J Mol Biol. 1970 Dec 28;54(3):599–604. doi: 10.1016/0022-2836(70)90130-0. [DOI] [PubMed] [Google Scholar]
  20. Nisseley S. P., Anderson W. B., Gottesman M. E., Perlman R. L., Pastan I. In vitro transcription of the gal operon requires cyclic adenosine monophosphate and cyclic adenosine monophosphate receptor protein. J Biol Chem. 1971 Aug 10;246(15):4671–4678. [PubMed] [Google Scholar]
  21. Oda K. I., Sakakibara Y., Tomizawa J. I. Regulation of transcription of the lambda bacteriophage genome. Virology. 1969 Dec;39(4):901–918. doi: 10.1016/0042-6822(69)90026-9. [DOI] [PubMed] [Google Scholar]
  22. Protass J. J., Korn D. Function of the N cistron of bacteriophage lambda. Proc Natl Acad Sci U S A. 1966 May;55(5):1089–1095. doi: 10.1073/pnas.55.5.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Radding C. M., Echols H. The role of the N gene of phage lambda in the synthesis of two phage-specific proteins. Proc Natl Acad Sci U S A. 1968 Jun;60(2):707–712. doi: 10.1073/pnas.60.2.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reichardt L., Kaiser A. D. Control of lambda repressor synthesis. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2185–2189. doi: 10.1073/pnas.68.9.2185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roberts J. W. Termination factor for RNA synthesis. Nature. 1969 Dec 20;224(5225):1168–1174. doi: 10.1038/2241168a0. [DOI] [PubMed] [Google Scholar]
  26. Schwartz M. On the function of the N cistron in phage lambda. Virology. 1970 Jan;40(1):23–33. doi: 10.1016/0042-6822(70)90375-2. [DOI] [PubMed] [Google Scholar]
  27. Signer E. R., Manly K. F., Brunstetter M. A. Deletion mapping of the c-3-N region of bacteriophage. Virology. 1969 Sep;39(1):137–141. doi: 10.1016/0042-6822(69)90356-0. [DOI] [PubMed] [Google Scholar]
  28. Skalka A., Butler B., Echols H. Genetic control of transcription during development of phage gamma. Proc Natl Acad Sci U S A. 1967 Aug;58(2):576–583. doi: 10.1073/pnas.58.2.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Taylor A. Endopeptidase activity of phage lamba-endolysin. Nat New Biol. 1971 Dec 1;234(48):144–145. doi: 10.1038/newbio234144a0. [DOI] [PubMed] [Google Scholar]
  30. Thomas R. Control of development in temperate bacteriophages. 3. Which prophage genes are and which are not trans-activable in the presence of immunity? J Mol Biol. 1970 Apr 28;49(2):393–404. doi: 10.1016/0022-2836(70)90252-4. [DOI] [PubMed] [Google Scholar]
  31. Toussaint A. Insertion of phage Mu. 1 within prophage lambda. A new approach for studying the control of the late functions in bacteriophage lambda. Mol Gen Genet. 1969;106(1):89–92. doi: 10.1007/BF00332824. [DOI] [PubMed] [Google Scholar]
  32. WOLLMAN E. L. TRANSDUCTION SPECIFIQUE DU MARQUEUR BIOTINE PAR LE BACT'ERIOPHAGELAMBDA. C R Hebd Seances Acad Sci. 1963 Dec 23;257:4225–4226. [PubMed] [Google Scholar]
  33. Zubay G., Gielow L., Englesberg E. Cell-free studies on the regulation of the arabinose operon. Nat New Biol. 1971 Oct 6;233(40):164–165. doi: 10.1038/newbio233164a0. [DOI] [PubMed] [Google Scholar]
  34. Zubay G., Morse D. E., Schrenk W. J., Miller J. H. Detection and isolation of the repressor protein for the tryptophan operon of Escherichia coli. Proc Natl Acad Sci U S A. 1972 May;69(5):1100–1103. doi: 10.1073/pnas.69.5.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zubay G., Schwartz D., Beckwith J. Mechanism of activation of catabolite-sensitive genes: a positive control system. Proc Natl Acad Sci U S A. 1970 May;66(1):104–110. doi: 10.1073/pnas.66.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES