Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Dec;80(24):7390–7394. doi: 10.1073/pnas.80.24.7390

Identification of a mutant human insulin predicted to contain a serine-for-phenylalanine substitution.

S Shoelson, M Fickova, M Haneda, A Nahum, G Musso, E T Kaiser, A H Rubenstein, H Tager
PMCID: PMC389956  PMID: 6424111

Abstract

Using information gained from (i) the relative HPLC retention of an abnormal insulin present in the serum of a hyperinsulinemic diabetic patient and (ii) the loss of an Mbo II restriction site in one of the patient's insulin gene alleles, it was recently predicted that the mutant insulin contained a serine-for-phenylalanine substitution at position B24 or B25. We have now prepared human [SerB24]insulin and [SerB25]insulin by solid-phase peptide synthesis and semisynthesis using an improved approach whereby the protecting groups can be removed from the final product in a single step. During reversed-phase HPLC analysis, the two semisynthetic insulins were clearly separated from normal insulin and from each other. Analysis of the patient's immunoaffinity-purified serum insulin by HPLC and radioimmunoassay showed that the insulin eluted at the position of [SerB24]insulin and coeluted with the analog when the two were studied in admixture. Additional studies showed that [SerB24]insulin and [SerB25]insulin have about 16% and 0.5% of the activity of normal insulin, respectively, in stimulating glucose oxidation by isolated rat adipocytes. We conclude that the patient's abnormal insulin (insulin Los Angeles) is human [SerB24]insulin and that abnormal insulins with amino acid replacements at both positions B24 and B25 can be associated with human diabetes.

Full text

PDF
7390

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assoian R. K., Thomas N. E., Kaiser E. T., Tager H. S. [LeuB24]insulin and [AlaB24]insulin: altered structures and cellular processing of B24-substituted insulin analogs. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5147–5151. doi: 10.1073/pnas.79.17.5147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. De Meyts P., Van Obberghen E., Roth J. Mapping of the residues responsible for the negative cooperativity of the receptor-binding region of insulin. Nature. 1978 Jun 15;273(5663):504–509. doi: 10.1038/273504a0. [DOI] [PubMed] [Google Scholar]
  3. Given B. D., Mako M. E., Tager H. S., Baldwin D., Markese J., Rubenstein A. H., Olefsky J., Kobayashi M., Kolterman O., Poucher R. Diabetes due to secretion of an abnormal insulin. N Engl J Med. 1980 Jan 17;302(3):129–135. doi: 10.1056/NEJM198001173020301. [DOI] [PubMed] [Google Scholar]
  4. Inouye K., Watanabe K., Tochino Y., Kobayashi M., Shigeta Y. Semisynthesis and properties of some insulin analogs. Biopolymers. 1981 Sep;20(9):1845–1858. doi: 10.1002/bip.1981.360200909. [DOI] [PubMed] [Google Scholar]
  5. Keefer L. M., Piron M. A., De Meyts P., Gattner H. G., Diaconescu C., Saunders D., Brandenburg D. Impaired negative cooperativity of the semisynthetic analogues human [LeuB24]- and [LeuB25]-insulins. Biochem Biophys Res Commun. 1981 Jun 16;100(3):1229–1236. doi: 10.1016/0006-291x(81)91955-0. [DOI] [PubMed] [Google Scholar]
  6. Kimmel J. R., Pollock H. G. Studies of human insulin from nondiabetic and diabetic pancreas. Diabetes. 1967 Oct;16(10):687–694. doi: 10.2337/diab.16.10.687. [DOI] [PubMed] [Google Scholar]
  7. Kobayashi M., Ohgaku S., Iwasaki M., Maegawa H., Shigeta Y., Inouye K. Characterization of [LeuB-24]- and [LeuB-25]-insulin analogues. Receptor binding and biological activity. Biochem J. 1982 Sep 15;206(3):597–603. doi: 10.1042/bj2060597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kwok S. C., Chan S. J., Rubenstein A. H., Poucher R., Steiner D. F. Loss of a restriction endonuclease cleavage site in the gene of a structurally abnormal human insulin. Biochem Biophys Res Commun. 1981 Feb 12;98(3):844–849. doi: 10.1016/0006-291x(81)91188-8. [DOI] [PubMed] [Google Scholar]
  9. Meek J. L. Prediction of peptide retention times in high-pressure liquid chromatography on the basis of amino acid composition. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1632–1636. doi: 10.1073/pnas.77.3.1632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Molnár I., Horváth C. Separation of amino acids and peptides on non-polar stationary phases by high-performance liquid chromatography. J Chromatogr. 1977 Nov 11;142:623–640. doi: 10.1016/s0021-9673(01)92073-4. [DOI] [PubMed] [Google Scholar]
  11. Nozaki Y., Tanford C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J Biol Chem. 1971 Apr 10;246(7):2211–2217. [PubMed] [Google Scholar]
  12. Robbins D. C., Blix P. M., Rubenstein A. H., Kanazawa Y., Kosaka K., Tager H. S. A human proinsulin variant at arginine 65. Nature. 1981 Jun 25;291(5817):679–681. doi: 10.1038/291679a0. [DOI] [PubMed] [Google Scholar]
  13. Shoelson S., Haneda M., Blix P., Nanjo A., Sanke T., Inouye K., Steiner D., Rubenstein A., Tager H. Three mutant insulins in man. Nature. 1983 Apr 7;302(5908):540–543. doi: 10.1038/302540a0. [DOI] [PubMed] [Google Scholar]
  14. Tager H., Given B., Baldwin D., Mako M., Markese J., Rubenstein A., Olefsky J., Kobayashi M., Kolterman O., Poucher R. A structurally abnormal insulin causing human diabetes. Nature. 1979 Sep 13;281(5727):122–125. doi: 10.1038/281122a0. [DOI] [PubMed] [Google Scholar]
  15. Tager H., Thomas N., Assoian R., Rubenstein A., Saekow M., Olefsky J., Kaiser E. T. Semisynthesis and biological activity of porcine [LeuB24]insulin and [LeuB25]insulin. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3181–3185. doi: 10.1073/pnas.77.6.3181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wollmer A., Strassburger W., Glatter U., Dodson G. G., McCall M., Gattner H. G., Danho W., Brandenburg D., Rittel W. Two mutant forms of human insulin. Structural consequences of the substitution of invariant B24- or B25-phenylalanine by leucine. Hoppe Seylers Z Physiol Chem. 1981 Jun;362(6):581–591. doi: 10.1515/bchm2.1981.362.1.581. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES