Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Dec;80(24):7471–7475. doi: 10.1073/pnas.80.24.7471

Role of basic residues in the phosphorylation of synthetic peptides by myosin light chain kinase.

B E Kemp, R B Pearson, C House
PMCID: PMC389973  PMID: 6584865

Abstract

The substrate specificity of the chicken gizzard myosin light chain kinase has been studied by using a series of synthetic peptide analogs of the NH2-terminal sequence of the chicken gizzard myosin light chain (Mr = 20,000). An 18-residue synthetic peptide, (sequence in text) corresponding to the sequence reported by Maita et al. [Maita, T., Chen, J. I. & Matsuda, G. (1981) Eur. J. Biochem. 117, 417-424], was phosphorylated with a 22-fold higher Km and a Vmax that was decreased to 1% of the native protein substrate. This peptide was also an inferior substrate when compared with an 18-residue synthetic peptide with an alternative sequence, (sequence: see text) which was phosphorylated with an apparent Km of 6.9 microM, comparable to the native protein substrate of 8.6 microM, and a Vmax of 3.9 mumol X min-1 X mg-1, 11% of that for the protein substrate. The kinetic of phosphorylation of shortened peptides corresponding to both sequences, together with peptides with appropriate substitutions, indicated that basic residues were the primary determinants of specificity for the smooth muscle myosin light chain kinase. In the latter peptide sequence, lysine residues 11 and 12 and the arginine at position 13 had a major influence on the kinetics of peptide phosphorylation.

Full text

PDF
7471

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelstein R. S., Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interaction. Annu Rev Biochem. 1980;49:921–956. doi: 10.1146/annurev.bi.49.070180.004421. [DOI] [PubMed] [Google Scholar]
  2. Adelstein R. S., Klee C. B. Purification and characterization of smooth muscle myosin light chain kinase. J Biol Chem. 1981 Jul 25;256(14):7501–7509. [PubMed] [Google Scholar]
  3. Burgess W. H., Jemiolo D. K., Kretsinger R. H. Interaction of calcium and calmodulin in the presence of sodium dodecyl sulfate. Biochim Biophys Acta. 1980 Jun 26;623(2):257–270. doi: 10.1016/0005-2795(80)90254-8. [DOI] [PubMed] [Google Scholar]
  4. Daniel J. L., Holmsen H., Adelstein R. S. Thrombin-stimulated myosin phosphorylation in intact platelets and its possible involvement secretion. Thromb Haemost. 1977 Dec 15;38(4):984–989. [PubMed] [Google Scholar]
  5. Eckols T. K., Thompson R. E., Masaracchia R. A. Primary substrate specificity determinants for the H4-specific protease-activated protein phosphotransferase. Eur J Biochem. 1983 Aug 1;134(2):249–254. doi: 10.1111/j.1432-1033.1983.tb07558.x. [DOI] [PubMed] [Google Scholar]
  6. Glass D. B., Krebs E. G. Comparison of the substrate specificity of adenosine 3':5'-monophosphate- and guanosine 3':5'-monophosphate-dependent protein kinases. Kinetic studies using synthetic peptides corresponding to phosphorylation sites in histone H2B. J Biol Chem. 1979 Oct 10;254(19):9728–9738. [PubMed] [Google Scholar]
  7. Hartshorne D. J., Persechini A. J. Phosphorylation of myosin as a regulatory component in smooth muscle. Ann N Y Acad Sci. 1980;356:130–141. doi: 10.1111/j.1749-6632.1980.tb29606.x. [DOI] [PubMed] [Google Scholar]
  8. Hodges R. S., Merrifield R. B. Monitoring of solid phase peptide synthesis by an automated spectrophotometric picrate method. Anal Biochem. 1975 May 12;65(1-2):241–272. doi: 10.1016/0003-2697(75)90509-6. [DOI] [PubMed] [Google Scholar]
  9. Kemp B. E., Graves D. J., Benjamini E., Krebs E. G. Role of multiple basic residues in determining the substrate specificity of cyclic AMP-dependent protein kinase. J Biol Chem. 1977 Jul 25;252(14):4888–4894. [PubMed] [Google Scholar]
  10. Kemp B. E., Pearson R. B., House C. Phosphorylation of a synthetic heptadecapeptide by smooth muscle myosin light chain kinase. J Biol Chem. 1982 Nov 25;257(22):13349–13353. [PubMed] [Google Scholar]
  11. Kemp B. E. Phosphorylation of synthetic peptide analogs of rabbit cardiac troponin inhibitory subunit by the cyclic AMP-dependent protein kinase. J Biol Chem. 1979 Apr 25;254(8):2638–2642. [PubMed] [Google Scholar]
  12. Maita T., Chen J. I., Matsuda G. Amino-acid sequence of the 20 000-molecular-weight light chain of chicken gizzard-muscle myosin. Eur J Biochem. 1981 Jul;117(2):417–424. doi: 10.1111/j.1432-1033.1981.tb06354.x. [DOI] [PubMed] [Google Scholar]
  13. Matsuda G., Maita T., Kato Y., Chen J. I., Umegane T. Amino acid sequences of the cardiac L-2A, L-2B and gizzard 17 000-Mr light chains of chicken muscle myosin. FEBS Lett. 1981 Dec 7;135(2):232–236. doi: 10.1016/0014-5793(81)80789-2. [DOI] [PubMed] [Google Scholar]
  14. Mrwa U., Hartshorne D. J. Phosphorylation of smooth muscle myosin and myosin light chains. Fed Proc. 1980 Apr;39(5):1564–1568. [PubMed] [Google Scholar]
  15. Noiman E. S. Phosphorylation of smooth muscle myosin light chains by cAMP-dependent protein kinase. J Biol Chem. 1980 Dec 10;255(23):11067–11070. [PubMed] [Google Scholar]
  16. Pearson R. B., House C., Kemp B. E. Myosin light chain kinase binding to plastic. FEBS Lett. 1982 Aug 23;145(2):327–331. doi: 10.1016/0014-5793(82)80193-2. [DOI] [PubMed] [Google Scholar]
  17. Penn E. J., Brocklehurst K. W., Sopwith A. M., Hales C. N., Hutton J. C. Ca2+--Calmodulin dependent myosin light-chain phosphorylating activity in insulin-secreting tissues. FEBS Lett. 1982 Mar 8;139(1):4–8. doi: 10.1016/0014-5793(82)80474-2. [DOI] [PubMed] [Google Scholar]
  18. Pires E., Perry S. V., Thomas M. A. Myosin light-chain kinase, a new enzyme from striated muscle. FEBS Lett. 1974 May 1;41(2):292–296. doi: 10.1016/0014-5793(74)81232-9. [DOI] [PubMed] [Google Scholar]
  19. Tessmer G. W., Skuster J. R., Tabatabai L. B., Graves D. J. Studies on the specificity of phosphorylase kinase using peptide substrates. J Biol Chem. 1977 Aug 25;252(16):5666–5671. [PubMed] [Google Scholar]
  20. Trotter J. A. Living macrophages phosphorylate the 20,000 Dalton light chains and heavy chains of myosin. Biochem Biophys Res Commun. 1982 Jun 15;106(3):1071–1077. doi: 10.1016/0006-291x(82)91820-4. [DOI] [PubMed] [Google Scholar]
  21. Zetterqvist O., Ragnarsson U., Humble E., Berglund L., Engström L. The minimum substrate of cyclic AMP-stimulated protein kinase, as studied by synthetic peptides representing the phosphorylatable site of pyruvate kinase (type L) of rat liver. Biochem Biophys Res Commun. 1976 Jun 7;70(3):696–703. doi: 10.1016/0006-291x(76)90648-3. [DOI] [PubMed] [Google Scholar]
  22. Zetterqvist O., Ragnarsson U. The structural requirements of substrates of cyclic AMP-dependent protein kinase. FEBS Lett. 1982 Mar 22;139(2):287–290. doi: 10.1016/0014-5793(82)80872-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES