Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Dec;80(24):7491–7495. doi: 10.1073/pnas.80.24.7491

31P NMR spectroscopy of rat organs, in situ, using chronically implanted radiofrequency coils.

A P Koretsky, S Wang, J Murphy-Boesch, M P Klein, T L James, M W Weiner
PMCID: PMC389977  PMID: 6584867

Abstract

A technique for making 31P NMR spectroscopic measurements in rat kidney, heart, and liver in vivo is presented. Two-turn solenoid coils were surgically implanted around the organ sufficiently in advance of NMR experiments to allow recovery of the animal. These chronically implanted coils allowed acquisition of high-resolution spectra at 40.5 and 97.3 MHz. No resolution improvement occurred at the higher field. Spectra were stable for up to 24 hr, during which time a variety of experiments could be performed. By accumulating spectra at 10-min intervals, the effects of intraperitoneal fructose injections were monitored; in kidney and liver, a rapid increase in sugar phosphates at the expense of Pi and ATP resulted. Fructose had no effect on heart metabolite levels. Spectra from the heart in vivo were obtained at systole and diastole by gating the spectrometer to the aortic pressure wave; no differences in phosphate metabolites were detected. Finally, saturation transfer techniques were used to monitor the rate of ATP synthesis in the kidney. The unidirectional rate constant for the conversion of Pi to ATP was 0.12 +/- 0.03 sec-1.

Full text

PDF
7491

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman J. J., Grove T. H., Wong G. G., Gadian D. G., Radda G. K. Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature. 1980 Jan 10;283(5743):167–170. doi: 10.1038/283167a0. [DOI] [PubMed] [Google Scholar]
  2. Ackerman J. J., Lowry M., Radda G. K., Ross B. D., Wong G. G. The role of intrarenal pH in regulation of ammoniagenesis: [31P]NMR studies of the isolated perfused rat kidney. J Physiol. 1981;319:65–79. doi: 10.1113/jphysiol.1981.sp013892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alger J. R., den Hollander J. A., Shulman R. G. In vivo phosphorus-31 nuclear magnetic resonance saturation transfer studies of adenosinetriphosphatase kinetics in Saccharomyces cerevisiae. Biochemistry. 1982 Jun 8;21(12):2957–2963. doi: 10.1021/bi00541a024. [DOI] [PubMed] [Google Scholar]
  4. Balaban R. S., Gadian D. G., Radda G. K. Phosphorus nuclear magnetic resonance study of the rat kidney in vivo. Kidney Int. 1981 Nov;20(5):575–579. doi: 10.1038/ki.1981.179. [DOI] [PubMed] [Google Scholar]
  5. Blouin A., Bolender R. P., Weibel E. R. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol. 1977 Feb;72(2):441–455. doi: 10.1083/jcb.72.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown T. R., Ugurbil K., Shulman R. G. 31P nuclear magnetic resonance measurements of ATPase kinetics in aerobic Escherichia coli cells. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5551–5553. doi: 10.1073/pnas.74.12.5551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burch H. B., Lowry O. H., Meinhardt L., Max P., Jr, Chyu K. Effect of fructose, dihydroxyacetone, glycerol, and glucose on metabolites and related compounds in liver and kidney. J Biol Chem. 1970 Apr 25;245(8):2092–2102. [PubMed] [Google Scholar]
  8. Chance B., Nakase Y., Bond M., Leigh J. S., Jr, McDonald G. Detection of 31P nuclear magnetic resonance signals in brain by in vivo and freeze-trapped assays. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4925–4929. doi: 10.1073/pnas.75.10.4925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans F. E. 31P nuclear magnetic resonance studies on relaxation parameters and line broadening of intracellular metabolites of HeLa cells. Arch Biochem Biophys. 1979 Mar;193(1):63–75. doi: 10.1016/0003-9861(79)90009-2. [DOI] [PubMed] [Google Scholar]
  10. Freeman D., Bartlett S., Radda G., Ross B. Energetics of sodium transport in the kidney. Saturation transfer 31P-NMR. Biochim Biophys Acta. 1983 Apr 5;762(2):325–336. doi: 10.1016/0167-4889(83)90087-3. [DOI] [PubMed] [Google Scholar]
  11. Garlick P. B., Radda G. K., Seeley P. J. Phosphorus NMR studies on perfused heart. Biochem Biophys Res Commun. 1977 Feb 7;74(3):1256–1262. doi: 10.1016/0006-291x(77)91653-9. [DOI] [PubMed] [Google Scholar]
  12. Gordon R. E., Hanley P. E., Shaw D., Gadian D. G., Radda G. K., Styles P., Bore P. J., Chan L. Localization of metabolites in animals using 31P topical magnetic resonance. Nature. 1980 Oct 23;287(5784):736–738. doi: 10.1038/287736a0. [DOI] [PubMed] [Google Scholar]
  13. Grove T. H., Ackerman J. J., Radda G. K., Bore P. J. Analysis of rat heart in vivo by phosphorus nuclear magnetic resonance. Proc Natl Acad Sci U S A. 1980 Jan;77(1):299–302. doi: 10.1073/pnas.77.1.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Iles R. A., Griffiths J. R., Stevens A. N., Gadian D. G., Porteous R. Effects of fructose on the energy metabolism and acid-base status of the perfused starved-rat liver. A 31phosphorus nuclear magnetic resonance study. Biochem J. 1980 Oct 15;192(1):191–202. doi: 10.1042/bj1920191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jacobus W. E., Taylor G. J., 4th, Hollis D. P., Nunnally R. L. Phosphorus nuclear magnetic resonance of perfused working rat hearts. Nature. 1977 Feb 24;265(5596):756–758. doi: 10.1038/265756a0. [DOI] [PubMed] [Google Scholar]
  16. Kreisberg J. I., Mills J. W., Jarrell J. A., Rabito C. A., Leaf A. Protection of cultured renal tubular epithelial cells from anoxic cell swelling and cell death. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5445–5447. doi: 10.1073/pnas.77.9.5445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Matthews P. M., Bland J. L., Gadian D. G., Radda G. K. The steady-state rate of ATP synthesis in the perfused rat heart measured by 31P NMR saturation transfer. Biochem Biophys Res Commun. 1981 Dec 15;103(3):1052–1059. doi: 10.1016/0006-291x(81)90915-3. [DOI] [PubMed] [Google Scholar]
  18. McLaughlin A. C., Takeda H., Chance B. Rapid ATP assays in perfused mouse liver by 31P NMR. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5445–5449. doi: 10.1073/pnas.76.11.5445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morris R. C., Jr, Nigon K., Reed E. B. Evidence that the severity of depletion of inorganic phosphate determines the severity of the disturbance of adenine nucleotide metabolism in the liver and renal cortex of the fructose-loaded rat. J Clin Invest. 1978 Jan;61(1):209–220. doi: 10.1172/JCI108920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mäenpä P. H., Raivio K. O., Kekomäki M. P. Liver adenine nucleotides: fructose-induced depletion and its effect on protein synthesis. Science. 1968 Sep 20;161(3847):1253–1254. doi: 10.1126/science.161.3847.1253. [DOI] [PubMed] [Google Scholar]
  21. Neurohr K. J., Barrett E. J., Shulman R. G. In vivo carbon-13 nuclear magnetic resonance studies of heart metabolism. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1603–1607. doi: 10.1073/pnas.80.6.1603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nunnally R. L., Hollis D. P. Adenosine triphosphate compartmentation in living hearts: a phosphorus nuclear magnetic resonance saturation transfer study. Biochemistry. 1979 Aug 7;18(16):3642–3646. doi: 10.1021/bi00583a032. [DOI] [PubMed] [Google Scholar]
  23. Radda G. K., Ackerman J. J., Bore P., Sehr P., Wong G. G., Ross B. D., Green Y., Bartlett S., Lowry M. 31P NMR studies on kidney intracellular pH in acute renal acidosis. Int J Biochem. 1980;12(1-2):277–281. doi: 10.1016/0020-711x(80)90084-1. [DOI] [PubMed] [Google Scholar]
  24. Ross B. D., Radda G. K., Gadian D. G., Rocker G., Esiri M., Falconer-Smith J. Examination of a case of suspected McArdle's syndrome by 31P nuclear magnetic resonance. N Engl J Med. 1981 May 28;304(22):1338–1342. doi: 10.1056/NEJM198105283042206. [DOI] [PubMed] [Google Scholar]
  25. Salhany J. M., Stohs S. J., Reinke L. A., Pieper G. M., Hassing J. M. 31P nuclear magnetic resonance of metabolic changes associated with cyanide intoxication in the perfused rat liver. Biochem Biophys Res Commun. 1979 Feb 28;86(4):1077–1083. doi: 10.1016/0006-291x(79)90227-4. [DOI] [PubMed] [Google Scholar]
  26. Sasaki R., Ikura K., Sugimoto E., Chiba H. The microdetermination of 2,3-diphosphoglycerate. Anal Biochem. 1974 Sep;61(1):43–47. doi: 10.1016/0003-2697(74)90330-3. [DOI] [PubMed] [Google Scholar]
  27. Shoubridge E. A., Briggs R. W., Radda G. K. 31p NMR saturation transfer measurements of the steady state rates of creatine kinase and ATP synthetase in the rat brain. FEBS Lett. 1982 Apr 19;140(2):289–292. doi: 10.1016/0014-5793(82)80916-2. [DOI] [PubMed] [Google Scholar]
  28. Woods H. F., Eggleston L. V., Krebs H. A. The cause of hepatic accumulation of fructose 1-phosphate on fructose loading. Biochem J. 1970 Sep;119(3):501–510. doi: 10.1042/bj1190501. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES