Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Dec;80(24):7506–7509. doi: 10.1073/pnas.80.24.7506

Stopped-flow cryoenzymology: detection of catalytic intermediates not observable at ambient temperatures.

H E Van Wart, S H Lin
PMCID: PMC389980  PMID: 6584868

Abstract

Stopped-flow cryoenzymology has been used to study the reaction of porcine kidney cytosol leucine aminopeptidase [alpha-aminoacyl-peptide hydrolase(cytosol), EC 3.4.11.1] with L-leucylglycyldansyl hydrazide in 50% (vol/vol) methanol buffer over the -40 to 23 degrees C temperature range. Resonance energy transfer between tryptophan residues of the enzyme E and the dansyl group of the substrate S has been used to detect the formation and interconversion of reaction intermediates (E X S)i. Above 0 degrees C, a single intermediate E X S is formed and decays by first-order kinetics to products. However, at temperatures below -20 degrees C, a new intermediate (E X S)' is observed immediately after mixing, which relaxes to E X S within 100 msec. Because the detection of this new intermediate would not have been possible at ambient temperatures, this illustrates the value of stopped-flow cryoenzymology for studies of catalytic pathways.

Full text

PDF
7506

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auld D. S. Conformational changes in proteins by low temperature--rapid flow analysis. Methods Enzymol. 1979;61:318–335. doi: 10.1016/0076-6879(79)61017-0. [DOI] [PubMed] [Google Scholar]
  2. Auld D. S., Prescott J. M. ES complexes of Aeromonas aminopeptidase: direct observation by stopped-flow fluorescence. Biochem Biophys Res Commun. 1983 Mar 29;111(3):946–951. doi: 10.1016/0006-291x(83)91391-8. [DOI] [PubMed] [Google Scholar]
  3. Douzou P., Balny C. Protein fractionation at subzero temperatures. Adv Protein Chem. 1978;32:77–189. doi: 10.1016/s0065-3233(08)60575-6. [DOI] [PubMed] [Google Scholar]
  4. Douzou P. Enzymology at subzero temperatures. Adv Enzymol Relat Areas Mol Biol. 1977;45:157–272. doi: 10.1002/9780470122907.ch3. [DOI] [PubMed] [Google Scholar]
  5. Fink A. L., Geeves M. A. Cryoenzymology: the study of enzyme catalysis at subzero temperatures. Methods Enzymol. 1979;63:336–370. doi: 10.1016/0076-6879(79)63015-x. [DOI] [PubMed] [Google Scholar]
  6. Galdes A., Auld D. S., Vallee B. L. Cryokinetic studies of the intermediates in the mechanism of carboxypeptidase A. Biochemistry. 1983 Apr 12;22(8):1888–1893. doi: 10.1021/bi00277a023. [DOI] [PubMed] [Google Scholar]
  7. Geoghegan K. F., Galdes A., Martinelli R. A., Holmquist B., Auld D. S., Vallee B. L. Cryospectroscopy of intermediates in the mechanism of carboxypeptidase A. Biochemistry. 1983 Apr 26;22(9):2255–2262. doi: 10.1021/bi00278a031. [DOI] [PubMed] [Google Scholar]
  8. Gutfreund H. Kinetic analysis of the properties and reactions of enzymes. Prog Biophys Mol Biol. 1975;29(2):161–195. doi: 10.1016/0079-6107(76)90022-5. [DOI] [PubMed] [Google Scholar]
  9. Hanahan D., Auld D. S. Low temperature stopped-flow spectrometry. Anal Biochem. 1980 Oct;108(1):86–95. doi: 10.1016/0003-2697(80)90696-x. [DOI] [PubMed] [Google Scholar]
  10. Hoa G. H., Douzou P. Stopped flow method at subzero temperatures. Anal Biochem. 1973 Jan;51(1):127–136. doi: 10.1016/0003-2697(73)90460-0. [DOI] [PubMed] [Google Scholar]
  11. Latt S. A., Auld D. S., Valee B. L. Surveyor substrates: energy-transfer gauges of active center topography during catalysis. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1383–1389. doi: 10.1073/pnas.67.3.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lin S. H., Van Wart H. E. Effect of cryosolvents and subzero temperatures on the hydrolysis of L-leucine-p-nitroanilide by porcine kidney leucine aminopeptidase. Biochemistry. 1982 Oct 26;21(22):5528–5533. doi: 10.1021/bi00265a023. [DOI] [PubMed] [Google Scholar]
  13. Lobb R. R., Auld D. S. Determination of enzyme mechanisms by radiationless energy transfer kinetics. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2684–2688. doi: 10.1073/pnas.76.6.2684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lobb R. R., Auld D. S. Stopped-flow radiationless energy transfer kinetics: direct observation of enzyme-substrate complexes at steady state. Biochemistry. 1980 Nov 11;19(23):5297–5302. doi: 10.1021/bi00564a023. [DOI] [PubMed] [Google Scholar]
  15. Stryer L., Haugland R. P. Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A. 1967 Aug;58(2):719–726. doi: 10.1073/pnas.58.2.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Van Wart H. E., Lin S. H. Metal binding stoichiometry and mechanism of metal ion modulation of the activity of porcine kidney leucine aminopeptidase. Biochemistry. 1981 Sep 29;20(20):5682–5689. doi: 10.1021/bi00523a007. [DOI] [PubMed] [Google Scholar]
  17. Van Wart H. E., Zimmer J. A versatile low-temperature stopped-flow instrument compatible with both rapid and slow scanning spectrometers. Anal Biochem. 1981 Nov 1;117(2):410–418. doi: 10.1016/0003-2697(81)90800-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES