Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Dec;80(23):7160–7164. doi: 10.1073/pnas.80.23.7160

Oxidation of methionine residues in proteins of activated human neutrophils.

H Fliss, H Weissbach, N Brot
PMCID: PMC390013  PMID: 6580633

Abstract

A simple assay for the detection of 35S-labeled methionine sulfoxide residues in proteins is described. The assay, which is based on the ability of CNBr to react with methionine but not with methionine sulfoxide, requires the prelabeling of cellular proteins with [35S]methionine. The assay was used to study the extent of methionine oxidation in newly synthesized proteins of both activated and quiescent human neutrophils. In cells undergoing a phorbol 12-myristate 13-acetate-induced respiratory burst, about 66% of all methionine residues in newly synthesized proteins were oxidized to the sulfoxide derivative, as compared with 9% in cells not treated with the phorbol ester. In contrast, quantitation of methionine sulfoxide content in the total cellular protein by means of amino acid analysis showed that only 22% of all methionine residues were oxidized in activated cells as compared with 9% in quiescent cells. It is proposed that methionine residues in nascent polypeptide chains are more susceptible to oxidation than those in completed proteins.

Full text

PDF
7160

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baehner R. L., Boxer L. A., Allen J. M., Davis J. Autooxidation as a basis for altered function by polymorphonuclear leukocytes. Blood. 1977 Aug;50(2):327–335. [PubMed] [Google Scholar]
  2. Benson J. R., Hare P. E. O-phthalaldehyde: fluorogenic detection of primary amines in the picomole range. Comparison with fluorescamine and ninhydrin. Proc Natl Acad Sci U S A. 1975 Feb;72(2):619–622. doi: 10.1073/pnas.72.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brot N., Weissbach H. Biochemistry and physiological role of methionine sulfoxide residues in proteins. Arch Biochem Biophys. 1983 May;223(1):271–281. doi: 10.1016/0003-9861(83)90592-1. [DOI] [PubMed] [Google Scholar]
  4. Brot N., Werth J., Koster D., Weissbach H. Reduction of N-acetyl methionine sulfoxide: a simple assay for peptide methionine sulfoxide reductase. Anal Biochem. 1982 May 15;122(2):291–294. doi: 10.1016/0003-2697(82)90283-4. [DOI] [PubMed] [Google Scholar]
  5. Carp H., Janoff A., Abrams W., Weinbaum G., Drew R. T., Weissbach H., Brot N. Human methionine sulfoxide-peptide reductase, an enzyme capable of reactivating oxidized alpha-1-proteinase inhibitor in vitro. Am Rev Respir Dis. 1983 Mar;127(3):301–305. doi: 10.1164/arrd.1983.127.3.301. [DOI] [PubMed] [Google Scholar]
  6. Clark R. A. Chemotactic factors trigger their own oxidative inactivation by human neutrophils. J Immunol. 1982 Dec;129(6):2725–2728. [PubMed] [Google Scholar]
  7. Clark R. A., Stone P. J., El Hag A., Calore J. D., Franzblau C. Myeloperoxidase-catalyzed inactivation of alpha 1-protease inhibitor by human neutrophils. J Biol Chem. 1981 Apr 10;256(7):3348–3353. [PubMed] [Google Scholar]
  8. Clark R. A., Szot S. The myeloperoxidase-hydrogen peroxide-halide system as effector of neutrophil-mediated tumor cell cytotoxicity. J Immunol. 1981 Apr;126(4):1295–1301. [PubMed] [Google Scholar]
  9. Clark R. A., Szot S., Venkatasubramanian K., Schiffmann E. Chemotactic factor inactivation by myeloperoxidase-mediated oxidation of methionine. J Immunol. 1980 Apr;124(4):2020–2026. [PubMed] [Google Scholar]
  10. Collins S. J., Ruscetti F. W., Gallagher R. E., Gallo R. C. Normal functional characteristics of cultured human promyelocytic leukemia cells (HL-60) after induction of differentiation by dimethylsulfoxide. J Exp Med. 1979 Apr 1;149(4):969–974. doi: 10.1084/jem.149.4.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DeChatelet L. R., McCall C. E., McPhail L. C. Inhibition of amino acid incorporation into protein of human neutrophils by phagocytosis. Infect Immun. 1973 Nov;8(5):791–795. doi: 10.1128/iai.8.5.791-795.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DeChatelet L. R., Shirley P. S., Johnston R. B., Jr Effect of phorbol myristate acetate on the oxidative metabolism of human polymorphonuclear leukocytes. Blood. 1976 Apr;47(4):545–554. [PubMed] [Google Scholar]
  13. Dooley M. M., Mudd J. B. Reaction of ozone with lysozyme under different exposure conditions. Arch Biochem Biophys. 1982 Oct 15;218(2):459–471. doi: 10.1016/0003-9861(82)90368-x. [DOI] [PubMed] [Google Scholar]
  14. Fliss H., Vasanthakumar G., Schiffmann E., Weissbach H., Brot N. Enzymatic reduction of oxidized chemotactic peptide N-formyl-L-methionyl-sulfoxide-L-leucyl-L-phenylalanine. Biochem Biophys Res Commun. 1982 Nov 16;109(1):194–201. doi: 10.1016/0006-291x(82)91584-4. [DOI] [PubMed] [Google Scholar]
  15. Fliss H., Viswanatha T. 2,3-butanedione as a photosensitizing agent: application to alpha-amino acids and alpha-chymotrypsin. Can J Biochem. 1979 Nov;57(11):1267–1272. doi: 10.1139/o79-168. [DOI] [PubMed] [Google Scholar]
  16. Fridovich I. The biology of oxygen radicals. Science. 1978 Sep 8;201(4359):875–880. doi: 10.1126/science.210504. [DOI] [PubMed] [Google Scholar]
  17. Goldstein I. M., Hoffstein S. T., Weissmann G. Mechanisms of lysosomal enzyme release from human polymorphonuclear leukocytes. Effects of phorbol myristate acetate. J Cell Biol. 1975 Sep;66(3):647–652. doi: 10.1083/jcb.66.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jori G., Galiazzo G., Marzotto A., Scoffone E. Selective and reversibe photo-oxidation of the methionyl residues in lysozyme. J Biol Chem. 1968 Aug 25;243(16):4272–4278. [PubMed] [Google Scholar]
  19. Korchak H. M., Eisenstat B. A., Smolen J. E., Rutherford L. E., Dunham P. B., Weissmann G. Stimulus-response coupling in the human neutrophil. The role of anion fluxes in degranulation. J Biol Chem. 1982 Jun 25;257(12):6916–6922. [PubMed] [Google Scholar]
  20. McCord J. M. Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science. 1974 Aug 9;185(4150):529–531. doi: 10.1126/science.185.4150.529. [DOI] [PubMed] [Google Scholar]
  21. Nelson R. D., McCormack R. T., Fiegel V. D., Herron M., Simmons R. L., Quie P. G. Chemotactic deactivation of human neutrophils: possible relationship to stimulation of oxidative metabolism. Infect Immun. 1979 Feb;23(2):282–286. doi: 10.1128/iai.23.2.282-286.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. RAY W. J., Jr, KOSHLAND D. E., Jr Comparative structural studies of phosphoglucomutase and chymotrypsin. Brookhaven Symp Biol. 1960 Nov;13:135–150. [PubMed] [Google Scholar]
  23. Repine J. E., White J. G., Clawson C. C., Holmes B. M. The influence of phorbol myristate acetate on oxygen consumption by polymorphonuclear leukocytes. J Lab Clin Med. 1974 Jun;83(6):911–920. [PubMed] [Google Scholar]
  24. Roos D. Molecular events during phagocyte stimulation. Scand J Rheumatol Suppl. 1981;40:46–52. doi: 10.3109/03009748109102877. [DOI] [PubMed] [Google Scholar]
  25. Roos D., Weening R. S., Voetman A. A. Protection of human neutrophils against oxidative damage. Agents Actions. 1980 Dec;10(6):528–535. doi: 10.1007/BF02024158. [DOI] [PubMed] [Google Scholar]
  26. Root R. K., Cohen M. S. The microbicidal mechanisms of human neutrophils and eosinophils. Rev Infect Dis. 1981 May-Jun;3(3):565–598. doi: 10.1093/clinids/3.3.565. [DOI] [PubMed] [Google Scholar]
  27. SHUGAR D. The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme. Biochim Biophys Acta. 1952 Mar;8(3):302–309. doi: 10.1016/0006-3002(52)90045-0. [DOI] [PubMed] [Google Scholar]
  28. Shechter Y., Burstein Y., Patchornik A. Selective oxidation of methionine residues in proteins. Biochemistry. 1975 Oct 7;14(20):4497–4503. doi: 10.1021/bi00691a025. [DOI] [PubMed] [Google Scholar]
  29. Stolc V. Characterization of iodoproteins secreted by phagocytosing human polymorphonuclear leukocytes. J Biol Chem. 1979 Feb 25;254(4):1273–1279. [PubMed] [Google Scholar]
  30. Stolc V. Inhibition of 14C-labeled amino acid incorporation into protein by particles and surface-active agents in human granulocytes. Biochim Biophys Acta. 1979 Aug 29;564(1):1–7. doi: 10.1016/0005-2787(79)90181-3. [DOI] [PubMed] [Google Scholar]
  31. Tauber A. I. Current view of neutrophil dysfunction: an integrated clinical perspective. Am J Med. 1981 Jun;70(6):1237–1236. doi: 10.1016/0002-9343(81)90833-0. [DOI] [PubMed] [Google Scholar]
  32. Tsan M. F., Denison R. C. Oxidation of n-formyl methionyl chemotactic peptide by human neutrophils. J Immunol. 1981 Apr;126(4):1387–1389. [PubMed] [Google Scholar]
  33. Tsan M. F. Phorbol myristate acetate induced neutrophil autotoxicity. J Cell Physiol. 1980 Nov;105(2):327–334. doi: 10.1002/jcp.1041050215. [DOI] [PubMed] [Google Scholar]
  34. Turkall R. M., Denison R. C., Tsan M. F. Degradation and oxidation of methionine enkephalin by human neutrophils. J Lab Clin Med. 1982 Mar;99(3):418–427. [PubMed] [Google Scholar]
  35. ULMER D. D., VALLEE B. L., WACKER W. E. Metalloenzymes and myocardial infarction. II. Malic and lactic dehydrogenase activities and zinc concentrations in serum. N Engl J Med. 1956 Sep 6;255(10):450–456. doi: 10.1056/NEJM195609062551001. [DOI] [PubMed] [Google Scholar]
  36. Voetman A. A., Weening R. S., Hamers M. N., Meerhof L. J., Bot A. A., Roos D. Phagocytosing human neutrophils inactivate their own granular enzymes. J Clin Invest. 1981 May;67(5):1541–1549. doi: 10.1172/JCI110185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wasi S., Hofmann T. The conformational state of methionine residues in the temperature-controlled transition of chymotrypsinogen and -chymotrypsin. Can J Biochem. 1973 Jun;51(6):797–805. doi: 10.1139/o73-099. [DOI] [PubMed] [Google Scholar]
  38. Weiss S. J., LoBuglio A. F. Phagocyte-generated oxygen metabolites and cellular injury. Lab Invest. 1982 Jul;47(1):5–18. [PubMed] [Google Scholar]
  39. Wright D. G., Bralove D. A., Gallin J. I. The differential mobilization of human neutrophil granules. Effects of phorbol myristate acetate and ionophore A23187. Am J Pathol. 1977 May;87(2):273–284. [PMC free article] [PubMed] [Google Scholar]
  40. Yamasaki R. B., Osuga D. T., Feeney R. E. Periodate oxidation of methionine in proteins. Anal Biochem. 1982 Oct;126(1):183–189. doi: 10.1016/0003-2697(82)90127-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES