Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Dec;80(23):7210–7214. doi: 10.1073/pnas.80.23.7210

Beta-adrenergic stimulation of Ca2+ fluxes, endocytosis, hexose transport, and amino acid transport in mouse kidney cortex is mediated by polyamine synthesis.

H Koenig, A D Goldstone, C Y Lu
PMCID: PMC390024  PMID: 6580640

Abstract

We recently found that the beta-adrenergic agonist 1-isoproterenol evokes a rapid (less than 5 min) Ca2+- and receptor-dependent stimulation of endocytosis, hexose transport, and amino acid transport in mouse renal cortex involving proximal tubule cells. This response is associated with increased Ca2+ fluxes and a mobilization of mitochondrial calcium, suggesting that stimulus-response (stimulus-"transport") coupling is mediated by cytosolic Ca2+. We show here that 1 microM isoproterenol evokes a rapid (less than 60 sec) transient increase in the activity of ornithine decarboxylase followed by an early (less than 2 min) sustained increase in putrescine, spermidine, and spermine concentrations in mouse kidney cortex slices in vitro. Small doses of isoproterenol (down to 24 nmol/kg) elicited a rapid (less than 2 min) increase in polyamines in vivo. The ornithine decarboxylase inhibitor alpha-difluoromethylornithine (5 mM) suppressed the testosterone-induced increase in polyamine levels and rates of endocytosis, hexose transport, and amino acid transport, measured by horseradish peroxidase, [14C]aminoisobutyric acid, and deoxy[3H]glucose uptake. alpha-Difluoromethylornithine also blocked the isoproterenol-induced increase in 45Ca influx and efflux and 45Ca redistribution; 0.5 mM putrescine nullified alpha-difluoromethylornithine inhibition and restored the increment in polyamines, 45Ca fluxes, endocytosis, hexose transport, and amino acid transport. These data implicate polyamine synthesis in isoproterenol stimulation of Ca2+ fluxes and membrane transport processes and support a model for signal transduction and stimulus-response coupling in which ornithine decarboxylase activation and polyamine synthesis play a pivotal role in regulating Ca2+ fluxes. In this model the polyamines generate local Ca2+ signals by stimulating Ca2+ influx or mobilizing intracellular calcium (or both) through a cation exchange reaction.

Full text

PDF
7210

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Giudicelli Y., Rebourcet M. C., Nordmann R., Nordmann J. Insulin-like effect of some polyamines on lipoprotein lipase from rat adipose tissue. FEBS Lett. 1976 Feb 1;62(1):74–76. doi: 10.1016/0014-5793(76)80019-1. [DOI] [PubMed] [Google Scholar]
  2. Goldstone A. D., Koenig H., Lu C. Y. Androgenic stimulation of endocytosis, amino acid and hexose transport in mouse kidney cortex involves increased calcium fluxes. Biochim Biophys Acta. 1983 Apr 5;762(2):366–371. doi: 10.1016/0167-4889(83)90091-5. [DOI] [PubMed] [Google Scholar]
  3. Goldstone A. D., Koenig H., Lu C. Y., Trout J. J. Beta-adrenergic stimulation evokes a rapid, Ca2+-dependent stimulation of endocytosis, hexose and amino acid transport associated with increased Ca2+ fluxes in mouse kidney cortex. Biochem Biophys Res Commun. 1983 Aug 12;114(3):913–921. doi: 10.1016/0006-291x(83)90647-2. [DOI] [PubMed] [Google Scholar]
  4. Heby O. Role of polyamines in the control of cell proliferation and differentiation. Differentiation. 1981;19(1):1–20. doi: 10.1111/j.1432-0436.1981.tb01123.x. [DOI] [PubMed] [Google Scholar]
  5. Igarashi K., Honma R., Tokuno H., Kitada M., Kitagawa H., Hirose S. Effect of polyamines on prostaglandin synthesis in various cell-free systems. Biochem Biophys Res Commun. 1981 Nov 30;103(2):659–666. doi: 10.1016/0006-291x(81)90501-5. [DOI] [PubMed] [Google Scholar]
  6. Jänne J., Pösö H., Raina A. Polyamines in rapid growth and cancer. Biochim Biophys Acta. 1978 Apr 6;473(3-4):241–293. doi: 10.1016/0304-419x(78)90015-x. [DOI] [PubMed] [Google Scholar]
  7. Koenig H., Goldstone A., Lu C. Y. Polyamines regulate calcium fluxes in a rapid plasma membrane response. Nature. 1983 Oct 6;305(5934):530–534. doi: 10.1038/305530a0. [DOI] [PubMed] [Google Scholar]
  8. Koenig H., Goldstone A., Lu C. Y. Testosterone induces a rapid stimulation of endocytosis, amino acid and hexose transport in mouse kidney cortex. Biochem Biophys Res Commun. 1982 May 31;106(2):346–353. doi: 10.1016/0006-291x(82)91116-0. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lockwood D. H., Lipsky J. J., Meronk F., Jr, East L. E. Actions of polyamines on lipid and glucose metabolism of fat cells. Biochem Biophys Res Commun. 1971 Aug 6;44(3):601–607. doi: 10.1016/s0006-291x(71)80125-0. [DOI] [PubMed] [Google Scholar]
  11. Nawata H., Yamamoto R. S., Poirier L. A. Ornithine decarboxylase induction and polyamine levels in the kidney of estradiol-treated castrated male rats. Life Sci. 1980 Mar 3;26(9):689–698. doi: 10.1016/0024-3205(80)90258-1. [DOI] [PubMed] [Google Scholar]
  12. Oriol-Audit C. Polyamine-induced actin polymerization. Eur J Biochem. 1978 Jun 15;87(2):371–376. doi: 10.1111/j.1432-1033.1978.tb12386.x. [DOI] [PubMed] [Google Scholar]
  13. Standen N. B., Stanfield P. R. A binding-site model for calcium channel inactivation that depends on calcium entry. Proc R Soc Lond B Biol Sci. 1982 Dec 22;217(1206):101–110. doi: 10.1098/rspb.1982.0097. [DOI] [PubMed] [Google Scholar]
  14. Wang J. H., Humniski P. M., Black W. J. Effect of polyamines on glycogen phosphorylase. Differential electrostatic interactions and enzymic properties. Biochemistry. 1968 Jun;7(6):2037–2044. doi: 10.1021/bi00846a004. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES