Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Dec;80(23):7362–7366. doi: 10.1073/pnas.80.23.7362

Metorphamide: isolation, structure, and biologic activity of an amidated opioid octapeptide from bovine brain.

E Weber, F S Esch, P Böhlen, S Paterson, A D Corbett, A T McKnight, H W Kosterlitz, J D Barchas, C J Evans
PMCID: PMC390055  PMID: 6316361

Abstract

Acid acetone extracts of caudate nucleus from bovine brain were found to contain an amidated opioid octapeptide with the following structure: Tyr-Gly-Gly-Phe-Met-Arg-Arg-Val-NH2. The peptide has been named metorphamide. Bovine metorphamide appears to be derived by proteolytic cleavage from proenkephalin, the common precursor to [Met5]enkephalin and [Leu5]enkephalin. The cleavage within the precursor giving rise to the carboxyl terminus of metorphamide occurs at a single arginine residue and is followed by transformation of a carboxyl-terminal glycine into an amide group. Metorphamide was detected in bovine caudate nucleus extracts by radioimmunoassay, and it was purified to homogeneity by gel filtration and reversed-phase high performance liquid chromatography. Amino acid composition analysis and automated Edman degradation in the gas-phase sequencer confirmed the postulated amino acid sequence. Carboxyl-terminal amidation of bovine metorphamide was shown by stability to carboxypeptidase A digestion and full crossreactivity in a radioimmunoassay that required the carboxyl-terminal amide as part of the recognition site. A synthetic replicate of metorphamide as well as several synthetic analogs were tested for opioid activity in several bioassays and binding assays, and metorphamide was found to have a high mu-binding activity. Metorphamide is the only known naturally occurring opioid peptide that has a high mu-binding activity. The kappa-binding activity is approximately equal to 50% that of the mu-binding activity, but delta-binding activity is negligible.

Full text

PDF
7362

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradbury A. F., Finnie M. D., Smyth D. G. Mechanism of C-terminal amide formation by pituitary enzymes. Nature. 1982 Aug 12;298(5875):686–688. doi: 10.1038/298686a0. [DOI] [PubMed] [Google Scholar]
  2. Böhlen P., Schroeder R. High-sensitivity amino acid analysis: methodology for the determination of amino acid compositions with less than 100 picomoles of peptides. Anal Biochem. 1982 Oct;126(1):144–152. doi: 10.1016/0003-2697(82)90120-8. [DOI] [PubMed] [Google Scholar]
  3. Chavkin C., James I. F., Goldstein A. Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science. 1982 Jan 22;215(4531):413–415. doi: 10.1126/science.6120570. [DOI] [PubMed] [Google Scholar]
  4. Comb M., Seeburg P. H., Adelman J., Eiden L., Herbert E. Primary structure of the human Met- and Leu-enkephalin precursor and its mRNA. Nature. 1982 Feb 25;295(5851):663–666. doi: 10.1038/295663a0. [DOI] [PubMed] [Google Scholar]
  5. Corbett A. D., Paterson S. J., McKnight A. T., Magnan J., Kosterlitz H. W. Dynorphin and dynorphin are ligands for the kappa-subtype of opiate receptor. Nature. 1982 Sep 2;299(5878):79–81. doi: 10.1038/299079a0. [DOI] [PubMed] [Google Scholar]
  6. Docherty K., Steiner D. F. Post-translational proteolysis in polypeptide hormone biosynthesis. Annu Rev Physiol. 1982;44:625–638. doi: 10.1146/annurev.ph.44.030182.003205. [DOI] [PubMed] [Google Scholar]
  7. Eipper B. A., Mains R. E., Glembotski C. C. Identification in pituitary tissue of a peptide alpha-amidation activity that acts on glycine-extended peptides and requires molecular oxygen, copper, and ascorbic acid. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5144–5148. doi: 10.1073/pnas.80.16.5144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Esch F. S., Böhlen P., Ling N. C., Brazeau P. E., Wehrenberg W. B., Guillemin R. Primary structures of three human pancreas peptides with growth hormone-releasing activity. J Biol Chem. 1983 Feb 10;258(3):1806–1812. [PubMed] [Google Scholar]
  9. Fischli W., Goldstein A., Hunkapiller M. W., Hood L. E. Isolation and amino acid sequence analysis of a 4,000-dalton dynorphin from porcine pituitary. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5435–5437. doi: 10.1073/pnas.79.17.5435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Giraud P., Castanas E., Patey G., Oliver C., Rossier J. Regional distribution of methionine-enkephalin-Arg6-Phe7 in the rat brain: comparative study with the distribution of other opioid peptides. J Neurochem. 1983 Jul;41(1):154–160. doi: 10.1111/j.1471-4159.1983.tb11827.x. [DOI] [PubMed] [Google Scholar]
  11. Goldstein A., Fischli W., Lowney L. I., Hunkapiller M., Hood L. Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7219–7223. doi: 10.1073/pnas.78.11.7219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goodman R. H., Jacobs J. W., Dee P. C., Habener J. F. Somatostatin-28 encoded in a cloned cDNA obtained from a rat medullary thyroid carcinoma. J Biol Chem. 1982 Feb 10;257(3):1156–1159. [PubMed] [Google Scholar]
  13. Gubler U., Monahan J. J., Lomedico P. T., Bhatt R. S., Collier K. J., Hoffman B. J., Böhlen P., Esch F., Ling N., Zeytin F. Cloning and sequence analysis of cDNA for the precursor of human growth hormone-releasing factor, somatocrinin. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4311–4314. doi: 10.1073/pnas.80.14.4311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gubler U., Seeburg P., Hoffman B. J., Gage L. P., Udenfriend S. Molecular cloning establishes proenkephalin as precursor of enkephalin-containing peptides. Nature. 1982 Jan 21;295(5846):206–208. doi: 10.1038/295206a0. [DOI] [PubMed] [Google Scholar]
  15. Ikeda Y., Nakao K., Yoshimasa T., Yanaihara N., Numa S., Imura H. Existence of Met-enkephalin-Arg6-Gly7-Leu8 with Met-enkephalin, Leu-enkephalin and Met-enkephalin-Arg6-Phe7 in the brain of guinea pig, rat and golden hamster. Biochem Biophys Res Commun. 1982 Jul 30;107(2):656–662. doi: 10.1016/0006-291x(82)91541-8. [DOI] [PubMed] [Google Scholar]
  16. Kakidani H., Furutani Y., Takahashi H., Noda M., Morimoto Y., Hirose T., Asai M., Inayama S., Nakanishi S., Numa S. Cloning and sequence analysis of cDNA for porcine beta-neo-endorphin/dynorphin precursor. Nature. 1982 Jul 15;298(5871):245–249. doi: 10.1038/298245a0. [DOI] [PubMed] [Google Scholar]
  17. Kangawa K., Minamino N., Chino N., Sakakibara S., Matsuo H. The complete amino acid sequence of alpha-neo-endorphin. Biochem Biophys Res Commun. 1981 Apr 15;99(3):871–878. doi: 10.1016/0006-291x(81)91244-4. [DOI] [PubMed] [Google Scholar]
  18. Kilpatrick D. L., Wahlstrom A., Lahm H. W., Blacher R., Udenfriend S. Rimorphin, a unique, naturally occurring [Leu]enkephalin-containing peptide found in association with dynorphin and alpha-neo-endorphin. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6480–6483. doi: 10.1073/pnas.79.21.6480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Land H., Schütz G., Schmale H., Richter D. Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor. Nature. 1982 Jan 28;295(5847):299–303. doi: 10.1038/295299a0. [DOI] [PubMed] [Google Scholar]
  20. Magnan J., Paterson S. J., Tavani A., Kosterlitz H. W. The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties. Naunyn Schmiedebergs Arch Pharmacol. 1982 Jun;319(3):197–205. doi: 10.1007/BF00495865. [DOI] [PubMed] [Google Scholar]
  21. Matsueda G. R., Stewart J. M. A p-methylbenzhydrylamine resin for improved solid-phase synthesis of peptide amides. Peptides. 1981 Spring;2(1):45–50. doi: 10.1016/s0196-9781(81)80010-1. [DOI] [PubMed] [Google Scholar]
  22. McKnight A. T., Corbett A. D., Kosterlitz H. W. Increase in potencies of opioid peptides after peptidase inhibition. Eur J Pharmacol. 1983 Jan 21;86(3-4):393–402. doi: 10.1016/0014-2999(83)90189-9. [DOI] [PubMed] [Google Scholar]
  23. Minamino N., Kangawa K., Fukuda A., Matsuo H., Iagarashi M. A new opioid octapeptide related to dynorphin from porcine hypothalamus. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1475–1481. doi: 10.1016/s0006-291x(80)80063-5. [DOI] [PubMed] [Google Scholar]
  24. Mizuno K., Minamino N., Kangawa K., Matsuo H. A new endogenous opioid peptide from bovine adrenal medulla: isolation and amino acid sequence of a dodecapeptide (BAM-12P). Biochem Biophys Res Commun. 1980 Aug 29;95(4):1482–1488. doi: 10.1016/s0006-291x(80)80064-7. [DOI] [PubMed] [Google Scholar]
  25. Mizuno K., Minamino N., Kangawa K., Matsuo H. A new family of endogenous "big" Met-enkephalins from bovine adrenal medulla: purification and structure of docosa- (BAM-22P) and eicosapeptide (BAM-20P) with very potent opiate activity. Biochem Biophys Res Commun. 1980 Dec 31;97(4):1283–1290. doi: 10.1016/s0006-291x(80)80005-2. [DOI] [PubMed] [Google Scholar]
  26. Noda M., Furutani Y., Takahashi H., Toyosato M., Hirose T., Inayama S., Nakanishi S., Numa S. Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature. 1982 Jan 21;295(5846):202–206. doi: 10.1038/295202a0. [DOI] [PubMed] [Google Scholar]
  27. Roth K. A., Evans C. J., Lorenz R. G., Weber E., Barchas J. D., Chang J. K. Identification of gastrin releasing peptide-related substances in guinea pig and rat brain. Biochem Biophys Res Commun. 1983 Apr 29;112(2):528–536. doi: 10.1016/0006-291x(83)91497-3. [DOI] [PubMed] [Google Scholar]
  28. Seizinger B. R., Höllt V., Herz A. Evidence for the occurrence of the opioid octapeptide dynorphin-(1-8) in the neurointermediate pituitary of rats. Biochem Biophys Res Commun. 1981 Sep 16;102(1):197–205. doi: 10.1016/0006-291x(81)91507-2. [DOI] [PubMed] [Google Scholar]
  29. Stern A. S., Jones B. N., Shively J. E., Stein S., Undenfriend S. Two adrenal opioid polypeptides: proposed intermediates in the processing of proenkephalin. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1962–1966. doi: 10.1073/pnas.78.3.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Weber E., Evans C. J., Barchas J. D. Predominance of the amino-terminal octapeptide fragment of dynorphin in rat brain regions. Nature. 1982 Sep 2;299(5878):77–79. doi: 10.1038/299077a0. [DOI] [PubMed] [Google Scholar]
  31. Weber E., Evans C. J., Chang J. K., Barchas J. D. Antibodies specific for alpha-N-acetyl-beta-endorphins: radioimmunoassays and detection of acetylated beta-endorphins in pituitary extracts. J Neurochem. 1982 Feb;38(2):436–447. doi: 10.1111/j.1471-4159.1982.tb08648.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES