Abstract
Three recently isolated peptides, whose sequences have been determined--the corticotropin (adrenocorticotropic hormone)-releasing factor of ovine origin, sauvagine, from the skin of the frog Phyllomedusa sauvagei, and urotensin I from the teleost fish, Catostomus commersoni--show high (greater than 50%) sequence homology. CD spectra of the three peptides in trifluoroethanol indicate predominantly helical character for these peptides. Analysis of the secondary structures by the Chou-Fasman method predicts that the overall structural organization of the peptides is the same. All three possess a long internal helix, spanning about 25 residues, connected by a turn region to a COOH-terminal structural element that is an alpha-helix in corticotropin-releasing factor and urotensin I and a beta-sheet in sauvagine. The values for helical content estimated from the prediction method agree reasonably well with those computed from the CD spectra. This agreement as well as the CD spectra of corticotropin-releasing factor fragment 5-33 support the specific assignments of helical regions derived from the Chou-Fasman analysis. The three peptides exhibit significantly less helical structure in water than in trifluoroethanol as indicated by CD spectra. Hydrophilicity profiles provided comparison of the three peptides in terms of their overall hydrophilicity and the location of the regions of maximal hydrophilicity. A unique distribution of hydrophilic and hydrophobic residues within the internal helices is revealed by helical wheel analysis. Patches of both types of residues are formed following a heptad (four/three) rule. Since the two patches are shifted by one residue relative to one another, together they occupy only one face of the helical surface, a feature distinct from other amphiphilic structures.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
- GUILLEMIN R., ROSENBERG B. Humoral hypothalamic control of anterior pituitary: a study with combined tissue cultures. Endocrinology. 1955 Nov;57(5):599–607. doi: 10.1210/endo-57-5-599. [DOI] [PubMed] [Google Scholar]
- Hopp T. P., Woods K. R. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3824–3828. doi: 10.1073/pnas.78.6.3824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lederis K., Letter A., McMaster D., Moore G., Schlesinger D. Complete amino acid sequence of urotensin I, a hypotensive and corticotropin-releasing neuropeptide from Catostomus. Science. 1982 Oct 8;218(4568):162–165. doi: 10.1126/science.6981844. [DOI] [PubMed] [Google Scholar]
- Montecucchi P. C., Gozzini L. Secondary structure prediction of sauvagine, a novel biologically active polypeptide from a frog. Int J Pept Protein Res. 1982 Aug;20(2):139–143. doi: 10.1111/j.1399-3011.1982.tb02666.x. [DOI] [PubMed] [Google Scholar]
- Montecucchi P. C., Henschen A. Amino acid composition and sequence analysis of sauvagine, a new active peptide from the skin of Phyllomedusa sauvagei. Int J Pept Protein Res. 1981 Aug;18(2):113–120. doi: 10.1111/j.1399-3011.1981.tb02047.x. [DOI] [PubMed] [Google Scholar]
- Morrisett J. D., David J. S., Pownall H. J., Gotto A. M., Jr Interaction of an apolipoprotein (apoLP-alanine) with phosphatidylcholine. Biochemistry. 1973 Mar 27;12(7):1290–1299. doi: 10.1021/bi00731a008. [DOI] [PubMed] [Google Scholar]
- Pitner T. P., Urry D. W. Proton magnetic resonance studies in trifluoroethanol. Solvent mixtures as a means of delineating peptide protons. J Am Chem Soc. 1972 Feb 23;94(4):1399–1400. doi: 10.1021/ja00759a083. [DOI] [PubMed] [Google Scholar]
- Rose G. D. Prediction of chain turns in globular proteins on a hydrophobic basis. Nature. 1978 Apr 13;272(5654):586–590. doi: 10.1038/272586a0. [DOI] [PubMed] [Google Scholar]
- Rose G. D., Roy S. Hydrophobic basis of packing in globular proteins. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4643–4647. doi: 10.1073/pnas.77.8.4643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SAFFRAN M., SCHALLY A. V. The release of corticotrophin by anterior pituitary tissue in vitro. Can J Biochem Physiol. 1955 May;33(3):408–415. [PubMed] [Google Scholar]
- Schiffer M., Edmundson A. B. Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys J. 1967 Mar;7(2):121–135. doi: 10.1016/S0006-3495(67)86579-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Segrest J. P., Jackson R. L., Morrisett J. D., Gotto A. M., Jr A molecular theory of lipid-protein interactions in the plasma lipoproteins. FEBS Lett. 1974 Jan 15;38(3):247–258. doi: 10.1016/0014-5793(74)80064-5. [DOI] [PubMed] [Google Scholar]
- Siegel J. B., Steinmetz W. E., Long G. L. A computer-assisted model for estimating protein secondary structure from circular dichroic spectra: comparison of animal lactate dehydrogenases. Anal Biochem. 1980 May 1;104(1):160–167. doi: 10.1016/0003-2697(80)90292-4. [DOI] [PubMed] [Google Scholar]
- Smith J. A., Pease L. G. Reverse turns in peptides and proteins. CRC Crit Rev Biochem. 1980;8(4):315–399. doi: 10.3109/10409238009105470. [DOI] [PubMed] [Google Scholar]
- Sparrow J. T., Gotto A. M., Jr Apolipoprotein/lipid interactions: studies with synthetic polypeptides. CRC Crit Rev Biochem. 1982;13(1):87–107. doi: 10.3109/10409238209108710. [DOI] [PubMed] [Google Scholar]
- Spiess J., Rivier J., Rivier C., Vale W. Primary structure of corticotropin-releasing factor from ovine hypothalamus. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6517–6521. doi: 10.1073/pnas.78.10.6517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutton R. E., Koob G. F., Le Moal M., Rivier J., Vale W. Corticotropin releasing factor produces behavioural activation in rats. Nature. 1982 May 27;297(5864):331–333. doi: 10.1038/297331a0. [DOI] [PubMed] [Google Scholar]
- Vale W., Spiess J., Rivier C., Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science. 1981 Sep 18;213(4514):1394–1397. doi: 10.1126/science.6267699. [DOI] [PubMed] [Google Scholar]
- Wu C. S., Hachimori A., Yang J. T. Lipid-induced ordered conformation of some peptide hormones and bioactive oligopeptides: predominance of helix over beta form. Biochemistry. 1982 Sep 14;21(19):4556–4562. doi: 10.1021/bi00262a007. [DOI] [PubMed] [Google Scholar]
- Yokoyama S., Fukushima D., Kupferberg J. P., Kézdy F. J., Kaiser E. T. The mechanism of activation of lecithin:cholesterol acyltransferase by apolipoprotein A-I and an amphiphilic peptide. J Biol Chem. 1980 Aug 10;255(15):7333–7339. [PubMed] [Google Scholar]
