Skip to main content
Frontiers in Physiology logoLink to Frontiers in Physiology
. 2014 Jan 24;5:15. doi: 10.3389/fphys.2014.00015

Atrial fibrillation and microRNAs

Gaetano Santulli 1,2,3,*, Guido Iaccarino 4,5, Nicola De Luca 2, Bruno Trimarco 1, Gianluigi Condorelli 6,7
PMCID: PMC3900852  PMID: 24478726

Abstract

Atrial fibrillation (AF) is the most common sustained arrhythmia, especially in the elderly, and has a significant genetic component. Recently, several independent investigators have demonstrated a functional role for small non-coding RNAs (microRNAs) in the pathophysiology of this cardiac arrhythmia. This report represents a systematic and updated appraisal of the main studies that established a mechanistic association between specific microRNAs and AF, focusing both on the regulation of electrical and structural remodeling of cardiac tissue.

Keywords: atrial fibrillation, microRNA (miRNA), electrical remodeling, apoptosis, structural remodeling, electrophysiology, fibrosis

MicroRNA

MicroRNAs (miRs) are an evolutionarily conserved class of small (~22 nucleotides) non-coding RNAs (Ambros, 2004; Gan et al., 2013), first discovered in Caenorhabditis elegans (Ruvkun and Giusto, 1989; Ruvkun et al., 1989). They represent a vital component of genetic regulation, existing in virtually all organisms, suggesting thereby a pivotal role in biological processes (Latronico and Condorelli, 2008; Thum et al., 2008). Indeed, miRs are important regulators of gene expression in numerous biological processes including cellular proliferation, differentiation, and tumorigenesis (Care et al., 2007; Dvinge et al., 2013; Shen et al., 2013; Song et al., 2013). Typically, miRs are regarded as negative regulators of gene expression that inhibit translation and/or promote mRNA degradation by base pairing to complementary sequences within the 3′-untranslated region (3′-UTR) of protein-coding mRNA transcripts (Van Rooij and Olson, 2012; Meijer et al., 2013). Generally, mRNA degradation accounts for the majority of miR activity (Guo et al., 2010). Hence, by altering levels of key regulators within complex genetic pathways, miRs provide a posttranscriptional level of control of homeostatic and developmental events (Callis et al., 2009; Yates et al., 2013).

It is estimated that miRs regulate over 60% of all protein-coding genes (Friedman et al., 2009; Akerman and Mukherjee, 2013; Leucci et al., 2013). Considering that a single miR can regulate multiple mRNAs and that each mRNA may be a target of multiple miRs, the possible pathways for miR-dependent regulation of protein abundance seem to be extremely complicated (Akerman and Mukherjee, 2013; Santulli and Totary-Jain, 2013). In this model, a biologic response would be expected only after co-expression of various miRs that cooperatively target different components of a functional network (Liu et al., 2012; Van Rooij and Olson, 2012) or are all required to sufficiently repress a single target (Lagos-Quintana et al., 2001; Kim, 2013).

Biogenesis and biological action of miRs

Maturation of miRs involves a multi-stepped process (Bartel, 2004; Cullen, 2004) that starts from the transcription (mainly operated by RNA polymerase II) of single-stranded non-protein-coding RNAs, which are either transcribed as stand alone transcripts (intergenic miRs), often encoding various miRs, or generated by the processing of introns of protein-coding genes (intragenic or intronic miRs).

Transcription of intergenic miRs leads to the formation of primary miRs (pri-miR) with a characteristic hairpin or stem-loop structure (Denli et al., 2004), which are subsequently processed by the nuclear RNase III, Drosha (Zeng et al., 2005), and its partner proteins, among which there is the DiGeorge Syndrome Critical Region 8 (DGCR8, known as Pasha in invertebrates), named for its association with DiGeorge Syndrome (Shiohama et al., 2003; Roth et al., 2013), to become precursor miR s (pre-miR). On the other hand, intronic miRs are obtained by the regular transcription of their host genes and then spliced to form looped pre-miRs, bypassing thereby the Drosha pathway (Bartel, 2004; Ruby et al., 2007).

Pre-miRs are exported from the nucleus in the cytoplasm in a process involving the Ran-GTP-dependent shuttle Exportin-5 (Lund et al., 2004). Once in the cytosol, the pre-miR hairpin is cleaved by the RNase III enzyme Dicer (Saxena and Tabin, 2010; Marasovic et al., 2013), yielding a mature miR:miR* duplex about 22 nucleotides in length, which is subsequently incorporated into the protein complex called RNA-induced silencing complex (RISC) to form miRISC (Filipowicz et al., 2008; Wu et al., 2013). At this point, one of the double strands, the guide strand, is selected by the argonaute protein (Pfaff et al., 2013), the catalytically active RNase in the RISC complex, on the basis of the thermodynamic stability of the 5′ end. In particular, the strand with a less thermodynamically stable 5′ end is commonly chosen and loaded into the RISC complex (Siomi and Siomi, 2009), serving as a guide for mRISC to find its complementary motifs in the 3′-UTR of the target mRNA(s). Although either strand of the mature duplex may potentially act as a functional miR, only one strand is usually incorporated into the RISC where the miR and its mRNA target interact (Fabian and Sonenberg, 2012; Von Brandenstein et al., 2012). Such a binding inhibits the translation of the protein that the target mRNA encodes or promotes gene silencing via mRNA degradation (Latronico and Condorelli, 2008; Kallen et al., 2012; Papait et al., 2013).

In the human genome more than 1200 miR sequences have been identified, hitherto [miRTarBase, Release 4.5, version 20 (Hsu et al., 2011)], with over 50,000 miR-target interactions. Recently, several algorithms and bioinformatics websites, including TargetScan and miRWalk (Lewis et al., 2005; Dweep et al., 2011) have been developed to predict specific mRNA/miR interactions. However, miR-binding rules are quite complex and are not fully understood, resulting in a lack of consensus in the literature.

Given all these crucial features, miRs could represent an important way for the cell to establish intercellular (with other cells, via secreted miRs) and intracellular (among its own genes) communication.

Establishing direct cause-and-effect links between miRs and mRNA targets is essential to understanding the molecular mechanisms underlying disease and the subsequent development of targeted therapies (Ambros et al., 2003; Zacharewicz et al., 2013).

Atrial fibrillation

Atrial fibrillation (AF) is a highly prevalent disease with a significant genetic component (Den Hoed et al., 2013; Mahida, 2013; Santulli, 2013), considered the most common sustained arrhythmia, which can cause or exacerbate heart failure and represents an important risk factor for ischemic stroke (Fye, 2006; Conen et al., 2011; Santulli, 2012b; Santulli et al., 2013; Thomas and Sorrentino, 2014). AF represents the most commonly seen arrhythmia worldwide, especially in the geriatric population (Huikuri, 2008; Riley and Manning, 2011; Santulli et al., 2012c; Santulli and Iaccarino, 2013) and is associated with a substantially pronounced morbidity and mortality (Beyerbach and Zipes, 2004; Santulli, 2012a; Garg and Akoum, 2013; Menezes et al., 2013). From a pathophysiological point of view, AF is characterized by atrial electrical remodeling, mainly mediated by ion-channel alterations (Brundel et al., 2001; Santulli et al., 2012b; Xie et al., 2013) and structural remodeling (fibrosis and apoptosis), which favors arrhythmia recurrence and maintenance (Perino et al., 2011; Santulli and D'Ascia, 2012; Santulli et al., 2012b). A noticeable feature of the electrical remodeling associated with AF is the abbreviation of the effective refractory period favoring reentry (D'Ascia et al., 2010, 2011; Kapur and Macrae, 2013), primarily due to shortening of atrial action potential duration (APD).

Three potential models have been proposed to explain the pathophysiology of AF (Jalife, 2011), albeit the precise relationship of each of these conceptual frameworks to human AF remains under investigation (Vikman et al., 2005; Kapur and Macrae, 2013; Shah et al., 2013):

The focal mechanism theory suggests that AF is provoked by the rapid firing of single or multiple ectopic foci, and also proposes a functional role for continued ectopic firing in the maintenance of AF (Lee et al., 2013).

The single circuit re-entry theory of AF assumes the presence of a single dominant reentry circuit alongside with the fragmentation of emanating waves in the heterogeneous electrical substrate of normal atrial tissue (Zemlin and Pertsov, 2007; Kapur and Macrae, 2013).

The multiple wavelet theory of AF stands on the notion that multiple reentry circuits exist, with randomly propagating wavefronts that must find receptive tissue in order to persist (Haissaguerre et al., 2013).

Slowing of conduction velocities and shortening of the refractory period of atrial myocytes (both central features of the electrical remodeling seen in AF) might help to stabilize the arrhythmia by decreasing circuit size. Of course these mechanistic models are not mutually exclusive. They may coexist in a single subject at various stages in the pathogenesis of AF and each may be applicable to certain subgroups of AF patients (Lindgren et al., 2003; Brieger and Freedman, 2009; Ruwald et al., 2013). Theoretically, all the miRs that are directly or indirectly involved in one of these processes, which are eventually based on the regulation of structural or electrical remodeling (cardiac automaticity, ion channels, fibrosis, and apoptosis), could participate in AF induction or perpetuation.

Experimental strategy to identify miRs involved in human disease

The most common experimental approach to identify the specific miRs that play a role in a certain disease mainly consists of three phases: (1) Use a microarray matrix to recognize a list of miRs that are differentially expressed in subjects with the disease compared to control subjects (Frezzetti et al., 2011; Jayaswal et al., 2011); (2) assess the putative target site efficacy by using bioinformatics-based algorithms or other computational tools that score potential interactions between microRNAs and mRNAs (Witkos et al., 2011); (3) validate in vitro (or in vivo) the existence of an inverse correlation between the expression levels of the miR and protein levels of its target gene(s). Another biological validation could be also achieved using a reporter system or other assays to prove that the binding of the miR and the target mRNA occurs within a RISC complex (Ling et al., 2013).

Functional role of miRs in atrial fibrillation

Growing evidence demonstrates that miRs regulate several properties of cardiac physiology and excitability, including automaticity, Ca2+ handling, conduction, and repolarization (Grueter et al., 2012; Boon et al., 2013; Heymans et al., 2013; Latronico and Condorelli, 2013). In particular, recent reports have unveiled an essential role of miRs in regulating cardiac excitability and arrhythmogenesis (Callis et al., 2009; Shan et al., 2009). These studies have primarily focused on the two muscle-specific miRs, i.e., miR-1 and miR-133, which are among the most abundantly expressed miRs in the heart (Liang et al., 2007; Wang et al., 2011).

However, lately other ubiquitously distributed miRs, such as miR-328 have been shown to exhibit a strong arrhythmogenic potential (Lu et al., 2010). It is likely that multiple miRs contribute to controlling arrhythmogenicity of the heart and that different miRs are involved in different types of arrhythmias under different pathological conditions of the heart (Horie et al., 2012; Kochegarov et al., 2013; Qiao et al., 2013; Zhang et al., 2013a). The most important miRs so far implicated in the pathophysiology of AF, regulating both electrical and structural remodeling, are reported in Table 1, alongside with their target gene(s) and function(s).

Table 1.

miRs with an established role in the regulation of cardiac electrical and structural remodeling.

miR Changes in AF Main target genes and their function References
miR-1 Down-regulated KCNJ2 Increased IK1 Zhao et al., 2007; Girmatsion et al., 2009
GJA1 (connexin43) Altered conduction
Fibullin-2 Increased fibrosis
miR-21 Up-regulated Spry1, PDCD4 Inhibition of fibroblast proliferation Adam et al., 2012
miR-26 Down-regulated KCNJ2 Increased IK1 Luo et al., 2013
miR-29 Down-regulated Fibrillin, collagen-1A1, collagen-3A1, Mcl-2 Increased fibrosis Dawson et al., 2013
miR-30 Down-regulated CTGF Increased fibrosis Duisters et al., 2009
miR-133 Down-regulated CTGF, TGF-β Increased fibrosis Cooley et al., 2012
miR-328 Up-regulated CACNB1 Shortened atrial action potential duration Lu et al., 2010
CACNA1C
miR-499 Up-regulated KCNN3 Altered conduction Ling et al., 2013

AF, Atrial fibrillation; KCNJ2, K+ inwardly-rectifying channel, subfamily J, member 2; GJA1, Gap junction alpha1 protein; SPRY1, sprouty homolog 1; Mcl-2, Myeloid cell-leukemia-2; CTGF, Connective tissue growth factor; TGF-β, Transforming growth factor β ; KCNN3, K+ intermediate/small conductance Ca2+-activated channel.

Although circulating miRs seem to be interesting candidates as biomarkers in AF patients, they still possess several important limitations (Quiat and Olson, 2013; Santulli and Totary-Jain, 2013). Indeed, at the moment there is no good natural stable housekeeping control for circulating miRs, which may result in strong variations, and they are generally present in low amounts in plasma and serum.

Regulation of proteins involved in electrical remodeling by miRs

As mentioned above, arrhythmogenesis is essentially attributed to enhanced triggered activity, and several studies have attributed such activity to alterations in different ion channels, including a peculiar instability in Ca2+ handling (Ter Keurs and Boyden, 2007; Zhang et al., 2008; Latronico and Condorelli, 2009; Kushnir and Marks, 2010; Nivala et al., 2012) and modulation of the cardiac inwardly rectifying K+ current (IK1), which stabilizes the resting membrane potential, controls cardiac excitability, regulates late-phase repolarization, and is thereby responsible for shaping the initial depolarization and final repolarization of the action potential (Dhamoon and Jalife, 2005).

In a seminal study, the expression of miR-1 was demonstrated to be reduced by ~86% in tissue samples of AF patients (Girmatsion et al., 2009). This miR has been shown to be mechanistically critical in the pathophysiology of AF via targeting IK1 and connexin43 (Girmatsion et al., 2009), both considered master regulators of cardiac conduction (Delmar and Makita, 2012; Musa et al., 2013). Similarly, miR-26 has the potential to repress IK1 (Luo et al., 2013). Intriguingly, in the setting of ventricular arrhythmias miR-1 levels appear to be augmented (Anderson and Mohler, 2007; Yang et al., 2007). Thus, the different regulation of such a miR in ventricular and atrial tissue deserves further investigations (Anderson and Mohler, 2007; Yang et al., 2007; Santulli et al., 2012a). The recently proposed involvement of miR-1 in the modulation of Ca2+ handling proteins, including calmodulin, phospholamban, Na+/Ca2+ exchanger (NCX), sorcin, junctin, triadin, eventually resulting in shortened refractoriness of sarcoplasmic reticulum Ca2+ release further support the hypothesis of a pivotal functional role of such a miR in the pathogenesis of AF (Ali et al., 2012; Karakikes et al., 2013; Slagsvold et al., 2013; Tritsch et al., 2013; Zhang et al., 2013b).

Lu et al. (2010) demonstrated that miR-328 level was elevated in AF patients and identified as target genes CACNA1C and CACNB1, encoding L-type Ca2+ channel subunits. Thereby, increased levels of miR-328 reduce ICaL density and shorten APD, leading to an increased arrhythmogenic potential. Additionally, miR-223, miR-328, and miR-664 were found to be upregulated by >2 fold in AF samples (Lu et al., 2010), and further investigations are required to establish the molecular mechanism underlying such a change in the miR transcriptome.

Most recently, Ling and colleagues found a strong association between mir-499, which is significantly up-regulated in atrial tissue from AF patients, and KCNN3, the gene that encodes the small-conductance Ca2+-activated K+ channel 3 (SK3), possibly contributing to the electrical remodeling observed in AF (Ling et al., 2013)

Regulation of proteins involved in structural remodeling by miRs

Fibrosis is the hallmark of structural cardiac remodeling (Allessie et al., 2002; Nguyen et al., 2013). Structural changes in the atria of AF patients have been identified (Anyukhovsky et al., 2005) at the level of cardiomyocytes and extracellular matrix (ECM), which predominately includes collagen types I and III, fibronectin, laminin, fibromodulin, and entactin (Goudis et al., 2012). ECM remodeling represents a maladaptive response to changes in myocardial structure and function during the progression of cardiac disease (Siwik and Colucci, 2004; Dernellis and Panaretou, 2006). Degradation and deposition of ECM is a process dynamically regulated by a delicate balance (Goudis et al., 2012) between matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs).

In addition to the regulation of key proteins involved in electrical remodeling, miR-1 also modulate cardiac fibrosis, through means of its target protein Fibullin-2, a secreted protein implicated in ECM remodeling (Karakikes et al., 2013). An intriguing role for miR-21 and its downstream target Sprouty (Spry1), a master regulator of fibroblast survival and growth factor secretion, controlling the extent of interstitial fibrosis (Thum et al., 2008), has been demonstrated both in AF patients, in which atria miR-21 is increased, and murine models (Adam et al., 2012). This miR might also be involved in the apoptosis process and in inflammation (Ando et al., 2013). Several groups have recently proposed miR-29 as a mechanistic contributor in AF, through means a regulation of several proteins involved in cardiac fibrosis and apoptosis (Straten and Andersen, 2010; Dawson et al., 2013; Hale and Levis, 2013).

Another potential therapeutic target to modulate fibrosis in AF is miR-30, which expression is down-regulated in AF. This miR directly interacts with the 3′ untranslated region of the connective tissue growth factor (CTGF), a key profibrotic protein (Duisters et al., 2009). The same group also proposed miR-133 as a modulator of CTGF protein levels (Duisters et al., 2009). Of interest, the same miR-133, which levels are reduced in AF patients (Cooley et al., 2012), is involved in the regulation of apoptosis and TGF-β signaling (Goette, 2009).

Conclusive remarks

Mounting evidence demonstrates that miRs are becoming one of the most fascinating areas of biology, given their critical roles in fine-tuning of physiological processes and their deregulation in several disorders, including AF. The relative role of different miRs in AF may also depend on the underlying etiology of AF, as the rhythm is an end stage manifestation of multiple, distinct predisposing pathological changes. The functional role of miRs as direct or indirect post-transcriptional regulators of genes implied in electrical and/or structural remodeling strongly suggest that these miRs may serve as potential biomarkers or promising drug targets, in prevention, treatment, and management of AF.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Adam O., Lohfelm B., Thum T., Gupta S. K., Puhl S. L., Schafers H. J., et al. (2012). Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Res. Cardiol. 107, 278 10.1007/s00395-012-0278-0 [DOI] [PubMed] [Google Scholar]
  2. Akerman A. W., Mukherjee R. (2013). MicroRNAs emerging as mediators of remodeling with atrial fibrillation. Heart Rhythm 10, 1010–1011 10.1016/j.hrthm.2013.03.021 [DOI] [PubMed] [Google Scholar]
  3. Ali R., Huang Y., Maher S. E., Kim R. W., Giordano F. J., Tellides G., et al. (2012). miR-1 mediated suppression of Sorcin regulates myocardial contractility through modulation of Ca2+ signaling. J. Mol. Cell. Cardiol. 52, 1027–1037 10.1016/j.yjmcc.2012.01.020 [DOI] [PubMed] [Google Scholar]
  4. Allessie M., Ausma J., Schotten U. (2002). Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc. Res. 54, 230–246 10.1016/S0008-6363(02)00258-4 [DOI] [PubMed] [Google Scholar]
  5. Ambros V. (2004). The functions of animal microRNAs. Nature 431, 350–355 10.1038/nature02871 [DOI] [PubMed] [Google Scholar]
  6. Ambros V., Bartel B., Bartel D. P., Burge C. B., Carrington J. C., Chen X., et al. (2003). A uniform system for microRNA annotation. RNA 9, 277–279 10.1261/rna.2183803 [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Anderson M. E., Mohler P. J. (2007). MicroRNA may have macro effect on sudden death. Nat. Med. 13, 410–411 10.1038/nm0407-410 [DOI] [PubMed] [Google Scholar]
  8. Ando Y., Yang G. X., Kenny T. P., Kawata K., Zhang W., Huang W., et al. (2013). Overexpression of microRNA-21 is associated with elevated pro-inflammatory cytokines in dominant-negative TGF-beta receptor type II mouse. J. Autoimmun. 41, 111–119 10.1016/j.jaut.2012.12.013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Anyukhovsky E. P., Sosunov E. A., Chandra P., Rosen T. S., Boyden P. A., Danilo P., et al. (2005). Age-associated changes in electrophysiologic remodeling: a potential contributor to initiation of atrial fibrillation. Cardiovasc. Res. 66, 353–363 10.1016/j.cardiores.2004.10.033 [DOI] [PubMed] [Google Scholar]
  10. Bartel D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 10.1016/S0092-8674(04)00045-5 [DOI] [PubMed] [Google Scholar]
  11. Beyerbach D. M., Zipes D. P. (2004). Mortality as an endpoint in atrial fibrillation. Heart Rhythm 1, B8–B18 discussion: B18–B19. 10.1016/j.hrthm.2004.04.018 [DOI] [PubMed] [Google Scholar]
  12. Boon R. A., Iekushi K., Lechner S., Seeger T., Fischer A., Heydt S., et al. (2013). MicroRNA-34a regulates cardiac ageing and function. Nature 495, 107–110 10.1038/nature11919 [DOI] [PubMed] [Google Scholar]
  13. Brieger D. B., Freedman S. B. (2009). Delirium cordis: can we predict the onset of atrial fibrillation? Lancet 373, 698–700 10.1016/S0140-6736(09)60415-3 [DOI] [PubMed] [Google Scholar]
  14. Brundel B. J., Van Gelder I. C., Henning R. H., Tuinenburg A. E., Wietses M., Grandjean J. G., et al. (2001). Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K+ channels. J. Am. Coll. Cardiol. 37, 926–932 10.1016/S0735-1097(00)01195-5 [DOI] [PubMed] [Google Scholar]
  15. Callis T. E., Pandya K., Seok H. Y., Tang R. H., Tatsuguchi M., Huang Z. P., et al. (2009). MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 119, 2772–2786 10.1172/JCI36154 [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Care A., Catalucci D., Felicetti F., Bonci D., Addario A., Gallo P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618 10.1038/nm1582 [DOI] [PubMed] [Google Scholar]
  17. Conen D., Chae C. U., Glynn R. J., Tedrow U. B., Everett B. M., Buring J. E., et al. (2011). Risk of death and cardiovascular events in initially healthy women with new-onset atrial fibrillation. JAMA 305, 2080–2087 10.1001/jama.2011.659 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Cooley N., Cowley M. J., Lin R. C., Marasco S., Wong C., Kaye D. M., et al. (2012). Influence of atrial fibrillation on microRNA expression profiles in left and right atria from patients with valvular heart disease. Physiol. Genomics 44, 211–219 10.1152/physiolgenomics.00111.2011 [DOI] [PubMed] [Google Scholar]
  19. Cullen B. R. (2004). Transcription and processing of human microRNA precursors. Mol. Cell 16, 861–865 10.1016/j.molcel.2004.12.002 [DOI] [PubMed] [Google Scholar]
  20. D'Ascia S. L., D'Ascia C., Marino V., Lombardi A., Santulli R., Chiariello M., et al. (2011). Cardiac resynchronisation therapy response predicts occurrence of atrial fibrillation in non-ischaemic dilated cardiomyopathy. Int. J. Clin. Pract. 65, 1149–1155 10.1111/j.1742-1241.2011.02732.x [DOI] [PubMed] [Google Scholar]
  21. D'Ascia S. L., Santulli G., Liguori V., Marino V., Arturo C., Chiariello M., et al. (2010). Advanced algorithms can lead to electrocardiographic misinterpretations. Int. J. Cardiol. 141, e34–e36 10.1016/j.ijcard.2008.11.144 [DOI] [PubMed] [Google Scholar]
  22. Dawson K., Wakili R., Ordog B., Clauss S., Chen Y., Iwasaki Y., et al. (2013). MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation 127, 1466–1475, 1475e1–e28. 10.1161/CIRCULATIONAHA.112.001207 [DOI] [PubMed] [Google Scholar]
  23. Delmar M., Makita N. (2012). Cardiac connexins, mutations and arrhythmias. Curr. Opin. Cardiol. 27, 236–241 10.1097/HCO.0b013e328352220e [DOI] [PubMed] [Google Scholar]
  24. Den Hoed M., Eijgelsheim M., Esko T., Brundel B. J., Peal D. S., Evans D. M., et al. (2013). Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nat. Genet. 45, 621–631 10.1038/ng.2610 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Denli A. M., Tops B. B., Plasterk R. H., Ketting R. F., Hannon G. J. (2004). Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235 10.1038/nature03049 [DOI] [PubMed] [Google Scholar]
  26. Dernellis J., Panaretou M. (2006). Effects of C-reactive protein and the third and fourth components of complement (C3 and C4) on incidence of atrial fibrillation. Am. J. Cardiol. 97, 245–248 10.1016/j.amjcard.2005.08.027 [DOI] [PubMed] [Google Scholar]
  27. Dhamoon A. S., Jalife J. (2005). The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis. Heart Rhythm 2, 316–324 10.1016/j.hrthm.2004.11.012 [DOI] [PubMed] [Google Scholar]
  28. Duisters R. F., Tijsen A. J., Schroen B., Leenders J. J., Lentink V., Van Der Made I., et al. (2009). miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res. 104, 170–178, 176p following 178. 10.1161/CIRCRESAHA.108.182535 [DOI] [PubMed] [Google Scholar]
  29. Dvinge H., Git A., Graf S., Salmon-Divon M., Curtis C., Sottoriva A., et al. (2013). The shaping and functional consequences of the microRNA landscape in breast cancer. Nature 497, 378–382 10.1038/nature12108 [DOI] [PubMed] [Google Scholar]
  30. Dweep H., Sticht C., Pandey P., Gretz N. (2011). miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J. Biomed. Inform. 44, 839–847 10.1016/j.jbi.2011.05.002 [DOI] [PubMed] [Google Scholar]
  31. Fabian M. R., Sonenberg N. (2012). The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat. Struct. Mol. Biol. 19, 586–593 10.1038/nsmb.2296 [DOI] [PubMed] [Google Scholar]
  32. Filipowicz W., Bhattacharyya S. N., Sonenberg N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102–114 10.1038/nrg2290 [DOI] [PubMed] [Google Scholar]
  33. Frezzetti D., De Menna M., Zoppoli P., Guerra C., Ferraro A., Bello A. M., et al. (2011). Upregulation of miR-21 by Ras in vivo and its role in tumor growth. Oncogene 30, 275–286 10.1038/onc.2010.416 [DOI] [PubMed] [Google Scholar]
  34. Friedman R. C., Farh K. K., Burge C. B., Bartel D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 10.1101/gr.082701.108 [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Fye W. B. (2006). Tracing atrial fibrillation–100 years. N. Engl. J. Med. 355, 1412–1414 10.1056/NEJMp068059 [DOI] [PubMed] [Google Scholar]
  36. Gan Z., Rumsey J., Hazen B. C., Lai L., Leone T. C., Vega R. B., et al. (2013). Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism. J. Clin. Invest. 123, 2564–2575 10.1172/JCI67652 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Garg A., Akoum N. (2013). Atrial fibrillation and heart failure: beyond the heart rate. Curr. Opin. Cardiol. 28, 332–336 10.1097/HCO.0b013e32835fb710 [DOI] [PubMed] [Google Scholar]
  38. Girmatsion Z., Biliczki P., Bonauer A., Wimmer-Greinecker G., Scherer M., Moritz A., et al. (2009). Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart Rhythm 6, 1802–1809 10.1016/j.hrthm.2009.08.035 [DOI] [PubMed] [Google Scholar]
  39. Goette A. (2009). Nicotine, atrial fibrosis, and atrial fibrillation: do microRNAs help to clear the smoke? Cardiovasc. Res. 83, 421–422 10.1093/cvr/cvp188 [DOI] [PubMed] [Google Scholar]
  40. Goudis C. A., Kallergis E. M., Vardas P. E. (2012). Extracellular matrix alterations in the atria: insights into the mechanisms and perpetuation of atrial fibrillation. Europace 14, 623–630 10.1093/europace/eur398 [DOI] [PubMed] [Google Scholar]
  41. Grueter C. E., Van Rooij E., Johnson B. A., Deleon S. M., Sutherland L. B., Qi X., et al. (2012). A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell 149, 671–683 10.1016/j.cell.2012.03.029 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Guo H., Ingolia N. T., Weissman J. S., Bartel D. P. (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 10.1038/nature09267 [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Haissaguerre M., Hocini M., Shah A. J., Derval N., Sacher F., Jais P., et al. (2013). Noninvasive panoramic mapping of human atrial fibrillation mechanisms: a feasibility report. J. Cardiovasc. Electrophysiol. 24, 711–717 10.1111/jce.12075 [DOI] [PubMed] [Google Scholar]
  44. Hale C. S., Levis W. R. (2013). MicroRNA-29 and an integrated understanding of atrial fibrillation. J. Drugs Dermatol. 12, 1083 [PubMed] [Google Scholar]
  45. Heymans S., Corsten M. F., Verhesen W., Carai P., Van Leeuwen R. E., Custers K., et al. (2013). Macrophage MicroRNA-155 promotes cardiac hypertrophy and failure. Circulation 128, 1420–1432 10.1161/CIRCULATIONAHA.112.001357 [DOI] [PubMed] [Google Scholar]
  46. Horie T., Baba O., Kuwabara Y., Chujo Y., Watanabe S., Kinoshita M., et al. (2012). MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J. Am. Heart Assoc. 1:e003376 10.1161/JAHA.112.003376 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Hsu S. D., Lin F. M., Wu W. Y., Liang C., Huang W. C., Chan W. L., et al. (2011). miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 39, D163–D169 10.1093/nar/gkq1107 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Huikuri H. V. (2008). Heart rate dynamics as a marker of vulnerability to atrial fibrillation. J. Cardiovasc. Electrophysiol. 19, 913–914 10.1111/j.1540-8167.2008.01197.x [DOI] [PubMed] [Google Scholar]
  49. Jalife J. (2011). Deja vu in the theories of atrial fibrillation dynamics. Cardiovasc. Res. 89, 766–775 10.1093/cvr/cvq364 [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Jayaswal V., Lutherborrow M., Ma D. D., Yang Y. H. (2011). Identification of microRNA-mRNA modules using microarray data. BMC Genomics 12:138 10.1186/1471-2164-12-138 [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Kallen A. N., Ma J., Huang Y. (2012). Does Lin28 antagonize miRNA-mediated repression by displacing miRISC from target mRNAs? Front. Genet. 3:240 10.3389/fgene.2012.00240 [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Kapur S., Macrae C. A. (2013). The developmental basis of adult arrhythmia: atrial fibrillation as a paradigm. Front. Physiol. 4:221 10.3389/fphys.2013.00221 [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Karakikes I., Chaanine A. H., Kang S., Mukete B. N., Jeong D., Zhang S., et al. (2013). Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J. Am. Heart Assoc. 2:e000078 10.1161/JAHA.113.000078 [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Kim G. H. (2013). MicroRNA regulation of cardiac conduction and arrhythmias. Transl. Res. 161, 381–392 10.1016/j.trsl.2012.12.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Kochegarov A., Moses A., Lian W., Meyer J., Hanna M. C., Lemanski L. F. (2013). A new unique form of microRNA from human heart, microRNA-499c, promotes myofibril formation and rescues cardiac development in mutant axolotl embryos. J. Biomed. Sci. 20:20 10.1186/1423-0127-20-20 [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Kushnir A., Marks A. R. (2010). The ryanodine receptor in cardiac physiology and disease. Adv. Pharmacol. 59, 1–30 10.1016/S1054-3589(10)59001-X [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. (2001). Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 10.1126/science.1064921 [DOI] [PubMed] [Google Scholar]
  58. Latronico M. V., Condorelli G. (2008). On the road to the definition of the cardiac miRNome in human disease states. J. Mol. Cell. Cardiol. 45, 162–164 10.1016/j.yjmcc.2008.05.018 [DOI] [PubMed] [Google Scholar]
  59. Latronico M. V., Condorelli G. (2009). RNA silencing: small RNA-mediated posttranscriptional regulation of mRNA and the implications for heart electropathophysiology. J. Cardiovasc. Electrophysiol. 20, 230–237 10.1111/j.1540-8167.2008.01357.x [DOI] [PubMed] [Google Scholar]
  60. Latronico M. V., Condorelli G. (2013). MicroRNA-dependent control of the cardiac fibroblast secretome. Circ. Res. 113, 1099–1101 10.1161/CIRCRESAHA.113.302566 [DOI] [PubMed] [Google Scholar]
  61. Lee G., Kumar S., Teh A., Madry A., Spence S., Larobina M., et al. (2013). Epicardial wave mapping in human long-lasting persistent atrial fibrillation: transient rotational circuits, complex wavefronts, and disorganized activity. Eur. Heart J. 35, 86–97 10.1093/eurheartj/eht267 [DOI] [PubMed] [Google Scholar]
  62. Leucci E., Patella F., Waage J., Holmstrom K., Lindow M., Porse B., et al. (2013). microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Sci. Rep. 3:2535 10.1038/srep02535 [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Lewis B. P., Burge C. B., Bartel D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 10.1016/j.cell.2004.12.035 [DOI] [PubMed] [Google Scholar]
  64. Liang Y., Ridzon D., Wong L., Chen C. (2007). Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8:166 10.1186/1471-2164-8-166 [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Lindgren K. S., Pekka Raatikainen M. J., Juhani Airaksinen K. E., Huikuri H. V. (2003). Relationship between the frequency of paroxysmal episodes of atrial fibrillation and pulmonary venous flow pattern. Europace 5, 17–23 10.1053/eupc.2002.0285 [DOI] [PubMed] [Google Scholar]
  66. Ling T. Y., Wang X. L., Chai Q., Lau T. W., Koestler C. M., Park S. J., et al. (2013). Regulation of the SK3 channel by microRNA-499–potential role in atrial fibrillation. Heart Rhythm 10, 1001–1009 10.1016/j.hrthm.2013.03.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Liu X., Jin D. Y., McManus M. T., Mourelatos Z. (2012). Precursor microRNA-programmed silencing complex assembly pathways in mammals. Mol. Cell 46, 507–517 10.1016/j.molcel.2012.03.010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Lu Y., Zhang Y., Wang N., Pan Z., Gao X., Zhang F., et al. (2010). MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 122, 2378–2387 10.1161/CIRCULATIONAHA.110.958967 [DOI] [PubMed] [Google Scholar]
  69. Lund E., Guttinger S., Calado A., Dahlberg J. E., Kutay U. (2004). Nuclear export of microRNA precursors. Science 303, 95–98 10.1126/science.1090599 [DOI] [PubMed] [Google Scholar]
  70. Luo X., Pan Z., Shan H., Xiao J., Sun X., Wang N., et al. (2013). MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J. Clin. Invest. 123, 1939–1951 10.1172/JCI62185 [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Mahida S. (2013). Transcription factors and atrial fibrillation. Cardiovasc. Res. [Epub ahead of print]. 10.1093/cvr/cvt261 [DOI] [PubMed] [Google Scholar]
  72. Marasovic M., Zocco M., Halic M. (2013). Argonaute and triman generate dicer-independent priRNAs and mature siRNAs to initiate heterochromatin formation. Mol. Cell. 52, 173–183 10.1016/j.molcel.2013.08.046 [DOI] [PubMed] [Google Scholar]
  73. Meijer H. A., Kong Y. W., Lu W. T., Wilczynska A., Spriggs R. V., Robinson S. W., et al. (2013). Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science 340, 82–85 10.1126/science.1231197 [DOI] [PubMed] [Google Scholar]
  74. Menezes A. R., Lavie C. J., Dinicolantonio J. J., O'Keefe J., Morin D. P., Khatib S., et al. (2013). Atrial fibrillation in the 21st century: a current understanding of risk factors and primary prevention strategies. Mayo Clin. Proc. 88, 394–409 10.1016/j.mayocp.2013.01.022 [DOI] [PubMed] [Google Scholar]
  75. Musa H., Carlton L., Klos M., Vikstrom K., Anumonwo J., Jalife J., et al. (2013). Arrhythmogenesis in a novel murine model with KCNJ2 mutation of familial atrial fibrillation. Heart Rhythm 10, 1749 10.1016/j.hrthm.2013.09.077 [DOI] [Google Scholar]
  76. Nguyen T. P., Qu Z., Weiss J. N. (2013). Cardiac fibrosis and arrhythmogenesis: the road to repair is paved with perils. J. Mol. Cell. Cardiol. [Epub ahead of print]. 10.1016/j.yjmcc.2013.10.018 [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Nivala M., Ko C. Y., Nivala M., Weiss J. N., Qu Z. (2012). Criticality in intracellular calcium signaling in cardiac myocytes. Biophys. J. 102, 2433–2442 10.1016/j.bpj.2012.05.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Papait R., Kunderfranco P., Stirparo G. G., Latronico M. V., Condorelli G. (2013). Long noncoding RNA: a new player of heart failure? J. Cardiovasc. Transl. Res. 6, 876–883 10.1007/s12265-013-9488-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Perino A., Ghigo A., Ferrero E., Morello F., Santulli G., Baillie G. S., et al. (2011). Integrating cardiac PIP3 and cAMP signaling through a PKA anchoring function of p110gamma. Mol. Cell 42, 84–95 10.1016/j.molcel.2011.01.030 [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Pfaff J., Hennig J., Herzog F., Aebersold R., Sattler M., Niessing D., et al. (2013). Structural features of Argonaute-GW182 protein interactions. Proc. Natl. Acad. Sci. U.S.A. 110, E3770–E3779 10.1073/pnas.1308510110 [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Qiao A., Khechaduri A., Kannan Mutharasan R., Wu R., Nagpal V., Ardehali H. (2013). MicroRNA-210 decreases heme levels by targeting ferrochelatase in cardiomyocytes. J. Am. Heart Assoc. 2:e000121 10.1161/JAHA.113.000121 [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Quiat D., Olson E. N. (2013). MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J. Clin. Invest. 123, 11–18 10.1172/JCI62876 [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Riley A. B., Manning W. J. (2011). Atrial fibrillation: an epidemic in the elderly. Expert Rev. Cardiovasc. Ther. 9, 1081–1090 10.1586/erc.11.107 [DOI] [PubMed] [Google Scholar]
  84. Roth B. M., Ishimaru D., Hennig M. (2013). The core microprocessor component DiGeorge syndrome critical region 8 (DGCR8) is a nonspecific RNA-binding protein. J. Biol. Chem. 288, 26785–26799 10.1074/jbc.M112.446880 [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Ruby J. G., Jan C. H., Bartel D. P. (2007). Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86 10.1038/nature05983 [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Ruvkun G., Ambros V., Coulson A., Waterston R., Sulston J., Horvitz H. R. (1989). Molecular genetics of the Caenorhabditis elegans heterochronic gene lin-14. Genetics 121, 501–516 [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Ruvkun G., Giusto J. (1989). The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature 338, 313–319 10.1038/338313a0 [DOI] [PubMed] [Google Scholar]
  88. Ruwald A. C., Bloch Thomsen P. E., Gang U., Jorgensen R. M., Huikuri H. V., Jons C. (2013). New-onset atrial fibrillation predicts malignant arrhythmias in post-myocardial infarction patients-A Cardiac Arrhythmias and RIsk Stratification after acute Myocardial infarction (CARISMA) substudy. Am. Heart J. 166, 855–863e853. 10.1016/j.ahj.2013.08.017 [DOI] [PubMed] [Google Scholar]
  89. Santulli G. (2012a). Coronary heart disease risk factors and mortality. JAMA 307, 1137 10.1001/jama.2012.323 [DOI] [PubMed] [Google Scholar]
  90. Santulli G. (2012b). Thrombolysis outcomes in acute ischemic stroke patients with prior stroke and diabetes mellitus. Neurology 78, 840 10.1212/WNL.0b013e31824de51b [DOI] [PubMed] [Google Scholar]
  91. Santulli G. (2013). Epidemiology of cardiovascular disease in the 21st century: updated numbers and updated facts. J. Cardiovasc. Dis. 1, 1–2 [Google Scholar]
  92. Santulli G., Ciccarelli M., Trimarco B., Iaccarino G. (2013). Physical activity ameliorates cardiovascular health in elderly subjects: the functional role of the beta adrenergic system. Front. Physiol. 4:209 10.3389/fphys.2013.00209 [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Santulli G., D'Ascia C. (2012). Atrial remodelling in echocardiographic super-responders to cardiac resynchronization therapy. Heart 98, 517 10.1136/heartjnl-2012-301731 [DOI] [PubMed] [Google Scholar]
  94. Santulli G., D'Ascia S., D'Ascia C. (2012a). Regarding the impact of left ventricular size on response to cardiac resynchronization therapy. Am. Heart J. 163, e11 10.1016/j.ahj.2012.01.001 [DOI] [PubMed] [Google Scholar]
  95. Santulli G., D'Ascia S. L., D'Ascia C. (2012b). Development of atrial fibrillation in recipients of cardiac resynchronization therapy: the role of atrial reverse remodelling. Can. J. Cardiol. 28, 245.e217 10.1016/j.cjca.2011.11.001 [DOI] [PubMed] [Google Scholar]
  96. Santulli G., D'Ascia S., Marino V., D'Ascia C. (2012c). Atrial function in patients undergoing CRT. JACC Cardiovasc. Imaging 5, 124–125 10.1016/j.jcmg.2011.11.002 [DOI] [PubMed] [Google Scholar]
  97. Santulli G., Iaccarino G. (2013). Pinpointing beta adrenergic receptor in ageing pathophysiology: victim or executioner? Evidence from crime scenes. Immun. Ageing 10:10 10.1186/1742-4933-10-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Santulli G., Totary-Jain H. (2013). Tailoring mTOR-based therapy: molecular evidence and clinical challenges. Pharmacogenomics 14, 1517–1526 10.2217/pgs.13.143 [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Saxena A., Tabin C. J. (2010). miRNA-processing enzyme Dicer is necessary for cardiac outflow tract alignment and chamber septation. Proc. Natl. Acad. Sci. U.S.A. 107, 87–91 10.1073/pnas.0912870107 [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Shah A. J., Hocini M., Xhaet O., Pascale P., Roten L., Wilton S. B., et al. (2013). Validation of novel 3-dimensional electrocardiographic mapping of atrial tachycardias by invasive mapping and ablation: a multicenter study. J. Am. Coll. Cardiol. 62, 889–897 10.1016/j.jacc.2013.03.082 [DOI] [PubMed] [Google Scholar]
  101. Shan H., Li X., Pan Z., Zhang L., Cai B., Zhang Y., et al. (2009). Tanshinone IIA protects against sudden cardiac death induced by lethal arrhythmias via repression of microRNA-1. Br. J. Pharmacol. 158, 1227–1235 10.1111/j.1476-5381.2009.00377.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Shen J., Xia W., Khotskaya Y. B., Huo L., Nakanishi K., Lim S. O., et al. (2013). EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 497, 383–387 10.1038/nature12080 [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Shiohama A., Sasaki T., Noda S., Minoshima S., Shimizu N. (2003). Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region. Biochem. Biophys. Res. Commun. 304, 184–190 10.1016/S0006-291X(03)00554-0 [DOI] [PubMed] [Google Scholar]
  104. Siomi H., Siomi M. C. (2009). On the road to reading the RNA-interference code. Nature 457, 396–404 10.1038/nature07754 [DOI] [PubMed] [Google Scholar]
  105. Siwik D. A., Colucci W. S. (2004). Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium. Heart Fail. Rev. 9, 43–51 10.1023/B:HREV.0000011393.40674.13 [DOI] [PubMed] [Google Scholar]
  106. Slagsvold K. H., Rognmo O., Hoydal M. A., Wisloff U., Wahba A. (2013). Remote ischemic preconditioning preserves mitochondrial function and influences myocardial microRNA expression in atrial myocardium during coronary bypass surgery. Circ. Res. [Epub ahead of print]. 10.1161/CIRCRESAHA.114.302751 [DOI] [PubMed] [Google Scholar]
  107. Song S. J., Poliseno L., Song M. S., Ala U., Webster K., Ng C., et al. (2013). MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 154, 311–324 10.1016/j.cell.2013.06.026 [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Straten P., Andersen M. H. (2010). The anti-apoptotic members of the Bcl-2 family are attractive tumor-associated antigens. Oncotarget 1, 239–245 [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Ter Keurs H. E., Boyden P. A. (2007). Calcium and arrhythmogenesis. Physiol. Rev. 87, 457–506 10.1152/physrev.00011.2006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Thomas I. C., Sorrentino M. J. (2014). Bleeding risk prediction models in atrial fibrillation. Curr. Cardiol. Rep. 16, 432 10.1007/s11886-013-0432-9 [DOI] [PubMed] [Google Scholar]
  111. Thum T., Gross C., Fiedler J., Fischer T., Kissler S., Bussen M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 10.1038/nature07511 [DOI] [PubMed] [Google Scholar]
  112. Tritsch E., Mallat Y., Lefebvre F., Diguet N., Escoubet B., Blanc J., et al. (2013). An SRF/miR-1 axis regulates NCX1 and Annexin A5 protein levels in the normal and failing heart. Cardiovasc. Res. 98, 372–380 10.1093/cvr/cvt042 [DOI] [PubMed] [Google Scholar]
  113. Van Rooij E., Olson E. N. (2012). MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat. Rev. Drug Discov. 11, 860–872 10.1038/nrd3864 [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Vikman S., Lindgren K., Makikallio T. H., Yli-Mayry S., Airaksinen K. E., Huikuri H. V. (2005). Heart rate turbulence after atrial premature beats before spontaneous onset of atrial fibrillation. J. Am. Coll. Cardiol. 45, 278–284 10.1016/j.jacc.2004.10.033 [DOI] [PubMed] [Google Scholar]
  115. Von Brandenstein M., Richter C., Fries J. W. (2012). MicroRNAs: small but amazing, and their association with endothelin. Life Sci. 91, 475–489 10.1016/j.lfs.2012.06.025 [DOI] [PubMed] [Google Scholar]
  116. Wang Z., Lu Y., Yang B. (2011). MicroRNAs and atrial fibrillation: new fundamentals. Cardiovasc. Res. 89, 710–721 10.1093/cvr/cvq350 [DOI] [PubMed] [Google Scholar]
  117. Witkos T. M., Koscianska E., Krzyzosiak W. J. (2011). Practical aspects of microRNA target prediction. Curr. Mol. Med. 11, 93–109 10.2174/156652411794859250 [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Wu P. H., Isaji M., Carthew R. W. (2013). Functionally diverse microRNA effector complexes are regulated by extracellular signaling. Mol. Cell 52, 113–123 10.1016/j.molcel.2013.08.023 [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Xie W., Santulli G., Guo X., Gao M., Chen B. X., Marks A. R. (2013). Imaging atrial arrhythmic intracellular calcium in intact heart. J. Mol. Cell. Cardiol. 64, 120–123 10.1016/j.yjmcc.2013.09.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Yang B., Lin H., Xiao J., Lu Y., Luo X., Li B., et al. (2007). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 13, 486–491 10.1038/nm1569 [DOI] [PubMed] [Google Scholar]
  121. Yates L. A., Norbury C. J., Gilbert R. J. (2013). The long and short of microRNA. Cell 153, 516–519 10.1016/j.cell.2013.04.003 [DOI] [PubMed] [Google Scholar]
  122. Zacharewicz E., Lamon S., Russell A. P. (2013). MicroRNAs in skeletal muscle and their regulation with exercise, ageing, and disease. Front. Physiol. 4:266 10.3389/fphys.2013.00266 [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Zemlin C. W., Pertsov A. M. (2007). Bradycardic onset of spiral wave re-entry: structural substrates. Europace 9(Suppl. 6), vi59–vi63 10.1093/europace/eum205 [DOI] [PubMed] [Google Scholar]
  124. Zeng Y., Yi R., Cullen B. R. (2005). Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 24, 138–148 10.1038/sj.emboj.7600491 [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Zhang R., Niu H., Ban T., Xu L., Li Y., Wang N., et al. (2013a). Elevated plasma microRNA-1 predicts heart failure after acute myocardial infarction. Int. J. Cardiol. 166, 259–260 10.1016/j.ijcard.2012.09.108 [DOI] [PubMed] [Google Scholar]
  126. Zhang Y., Sun L., Zhang Y., Liang H., Li X., Cai R., et al. (2013b). Overexpression of microRNA-1 causes atrioventricular block in rodents. Int. J. Biol. Sci. 9, 455–462 10.7150/ijbs.4630 [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Zhang Y., Huang Z. J., Dai D. Z., Feng Y., Na T., Tang X. Y., et al. (2008). Downregulated FKBP12.6 expression and upregulated endothelin signaling contribute to elevated diastolic calcium and arrhythmogenesis in rat cardiomyopathy produced by l-thyroxin. Int. J. Cardiol. 130, 463–471 10.1016/j.ijcard.2008.05.018 [DOI] [PubMed] [Google Scholar]
  128. Zhao Y., Ransom J. F., Li A., Vedantham V., Von Drehle M., Muth A. N., et al. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317 10.1016/j.cell.2007.03.030 [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Physiology are provided here courtesy of Frontiers Media SA

RESOURCES