Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Nov;80(22):7042–7046. doi: 10.1073/pnas.80.22.7042

Resonance Raman studies of nitric oxide binding to ferric and ferrous hemoproteins: detection of Fe(III)--NO stretching, Fe(III)--N--O bending, and Fe(II)--N--O bending vibrations.

B Benko, N T Yu
PMCID: PMC390123  PMID: 6580627

Abstract

The nature of bonding interactions between Fe(III) and NO in the ferric nitrosyl complexes of myoglobin (Mb), hemoglobin A (HbA), and horseradish peroxidase (HRP) is investigated by Soret-excited resonance Raman spectroscopy. On the basis of 15NO and N18O isotope shifts, we clearly identified the Fe(III)--NO bond stretching frequencies at 595 cm-1 (ferric Mb X NO), 594 cm-1 (ferric HbA X NO), and 604 cm-1 (ferric HRP X NO). The Fe(III)--N--O bending vibrations are located at 573 cm-1 (ferric Mb X NO) and 574 cm-1 (ferric HRP X NO), which are very similar to the Fe(II)--C--O bending modes at 578 cm-1 in Mb X CO and HbA X CO. However, the Fe(III)--NO and Fe(II)--CO stretching frequencies differ by approximately equal to 90 cm-1, indicating a much stronger iron-axial ligand bond for the [Fe(III) + NO] system, which is isoelectronic with the [Fe(II) + CO] system and, hence, presumably also has a linear Fe(III)--N--O linkage (in the absence of distal steric effect). The unusually strong Fe(III)--NO bond may be attributed to the pi bonding involving the unpaired electron in the pi (NO) orbital. The N18O isotope shift data indicate that the widely accepted assignment of the Fe(II)--NO stretching vibration at approximately equal to 554 cm-1 in ferrous nitrosyl Mb/HbA is incorrect; instead, we assign it to the Fe(II)--N--O bending mode. The validity of the assignment of Fe(II)--O2 stretch at 567 cm-1 in oxy-HbA by Brunner [Brunner, H. (1974) Naturwissenschaften 61, 129-130] is now in doubt. Literature data are presented to suggest that it is the Fe(II)--O--O bending vibration.

Full text

PDF
7042

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asher S. Resonance Raman spectroscopy of hemoglobin. Methods Enzymol. 1981;76:371–413. doi: 10.1016/0076-6879(81)76132-9. [DOI] [PubMed] [Google Scholar]
  2. BUTT W. D., KEILIN D. Absorption spectra and some other properties of cytochrome c and of its compounds with ligands. Proc R Soc Lond B Biol Sci. 1962 Nov 20;156:429–458. doi: 10.1098/rspb.1962.0049. [DOI] [PubMed] [Google Scholar]
  3. Chien J. C. Reactions of nitric oxide with methemoglobin. J Am Chem Soc. 1969 Apr 9;91(8):2166–2168. doi: 10.1021/ja01036a085. [DOI] [PubMed] [Google Scholar]
  4. Chottard G., Mansuy D. Resonance Raman studies of hemoglobin complexes with nitric oxide, nitrosobenzene and nitrosomethane: observation of the metal-ligand vibrations. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1333–1338. doi: 10.1016/s0006-291x(77)80125-3. [DOI] [PubMed] [Google Scholar]
  5. Deatherage J. F., Moffat K. Structure of nitric oxide hemoglobin. J Mol Biol. 1979 Nov 5;134(3):401–417. doi: 10.1016/0022-2836(79)90360-7. [DOI] [PubMed] [Google Scholar]
  6. Desbois A., Lutz M., Banerjee R. Low-frequency vibrations in resonance Raman spectra of horse heart myoglobin. Iron-ligand and iron-nitrogen vibrational modes. Biochemistry. 1979 Apr 17;18(8):1510–1518. doi: 10.1021/bi00575a019. [DOI] [PubMed] [Google Scholar]
  7. Desbois A., Lutz M., Banerjee R. Protoheme conformations in low-spin ferrohemoproteins. Resonance Raman spectroscopy. Biochim Biophys Acta. 1981 Dec 29;671(2):184–192. doi: 10.1016/0005-2795(81)90133-1. [DOI] [PubMed] [Google Scholar]
  8. Duff L. L., Appelman E. H., Shriver D. F., Klotz I. M. Steric disposition of O2 in oxyhemoglobin as revealed by its resonance Raman spectrum. Biochem Biophys Res Commun. 1979 Oct 29;90(4):1098–1103. doi: 10.1016/0006-291x(79)91148-3. [DOI] [PubMed] [Google Scholar]
  9. Hoffman B. M., Gibson Q. H. On the photosensitivity of liganded hemoproteins and their metal-substituted analogues. Proc Natl Acad Sci U S A. 1978 Jan;75(1):21–25. doi: 10.1073/pnas.75.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hori H., Ikeda-Saito M., Yonetani T. Single crystal EPR of myoglobin nitroxide. Freezing-induced reversible changes in the molecular orientation of the ligand. J Biol Chem. 1981 Aug 10;256(15):7849–7855. [PubMed] [Google Scholar]
  11. Huisman T. H., Dozy A. M. Studies on the heterogeneity of hemoglobin. IX. The use of Tris(hydroxymethyl)aminomethanehcl buffers in the anion-exchange chromatography of hemoglobins. J Chromatogr. 1965 Jul;19(1):160–169. doi: 10.1016/s0021-9673(01)99434-8. [DOI] [PubMed] [Google Scholar]
  12. Kerr E. A., Mackin H. C., Yu N. T. Resonance Raman studies of carbon monoxide binding to iron "picket fence" porphyrin with unhindered and hindered axial bases. An inverse relationship between binding affinity and the strength of iron-carbon bond. Biochemistry. 1983 Sep 13;22(19):4373–4379. doi: 10.1021/bi00288a005. [DOI] [PubMed] [Google Scholar]
  13. Kon H. Electron paramagnetic resonance of nitric oxide cytochrome C. Biochem Biophys Res Commun. 1969 May 8;35(3):423–427. doi: 10.1016/0006-291x(69)90517-8. [DOI] [PubMed] [Google Scholar]
  14. Mackin H. C., Tsubaki M., Yu N. T. Resonance Raman studies of Co-O2 and O-O stretching vibrations in oxy-cobalt hemes. Biophys J. 1983 Mar;41(3):349–357. doi: 10.1016/S0006-3495(83)84446-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maxwell J. C., Caughey W. S. An infrared study of NO bonding to heme B and hemoglobin A. Evidence for inositol hexaphosphate induced cleavage of proximal histidine to iron bonds. Biochemistry. 1976 Jan 27;15(2):388–396. doi: 10.1021/bi00647a023. [DOI] [PubMed] [Google Scholar]
  16. Nagai K., Kitagawa T., Morimoto H. Quaternary structures and low frequency molecular vibrations of haems of deoxy and oxyhaemoglobin studied by resonance raman scattering. J Mol Biol. 1980 Jan 25;136(3):271–289. doi: 10.1016/0022-2836(80)90374-5. [DOI] [PubMed] [Google Scholar]
  17. Nagai K., Welborn C., Dolphin D., Kitagawa T. Resonance Raman evidence for cleavage of the Fe-N epsilon(His-F8) bond in the alpha subunit of the T-structure nitrosylhemoglobin. Biochemistry. 1980 Oct 14;19(21):4755–4761. doi: 10.1021/bi00562a006. [DOI] [PubMed] [Google Scholar]
  18. O'Keeffe D. H., Ebel R. E., Peterson J. A. Studies of the oxygen binding site of cytochrome P-450. Nitric oxide as a spin-label probe. J Biol Chem. 1978 May 25;253(10):3509–3516. [PubMed] [Google Scholar]
  19. Perutz M. F., Kilmartin J. V., Nagai K., Szabo A., Simon S. R. Influence of globin structures on the state of the heme. Ferrous low spin derivatives. Biochemistry. 1976 Jan 27;15(2):378–387. doi: 10.1021/bi00647a022. [DOI] [PubMed] [Google Scholar]
  20. Rakshit G., Spiro T. G. Resonance Raman spectra of horseradish peroxidase: evidence for anomalous heme structure. Biochemistry. 1974 Dec 17;13(26):5317–5323. doi: 10.1021/bi00723a010. [DOI] [PubMed] [Google Scholar]
  21. Rousseau D. L., Ondrias M. R., LaMar G. N., Kong S. B., Smith K. M. Resonance Raman spectra of the heme in leghemoglobin. Evidence for the absence of ruffling and the influence of the vinyl groups. J Biol Chem. 1983 Feb 10;258(3):1740–1746. [PubMed] [Google Scholar]
  22. Rousseau D. L., Ondrias M. R. Resonance Raman scattering studies of the quaternary structure transition in hemoglobin. Annu Rev Biophys Bioeng. 1983;12:357–380. doi: 10.1146/annurev.bb.12.060183.002041. [DOI] [PubMed] [Google Scholar]
  23. Salhany J. M., Ogawa S., Shulman R. G. Correlation between quaternary structure and ligand dissociation kinetics for fully liganded hemoglobin. Biochemistry. 1975 May 20;14(10):2180–2190. doi: 10.1021/bi00681a022. [DOI] [PubMed] [Google Scholar]
  24. Salhany J. M., Ogawa S., Shulman R. G. Spectral-kinetic heterogeneity in reactions of nitrosyl hemoglobin. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3359–3362. doi: 10.1073/pnas.71.9.3359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Scheidt W. R., Piciulo P. L. Nitrosylmetalloporphyrins. III. Synthesis and molecular stereochemistry of nitrosyl-alpha, beta, gamma, delta-tetraphenylporphinato(1-methylimidazole)iron(II). J Am Chem Soc. 1976 Mar 31;98(7):1913–1919. doi: 10.1021/ja00423a044. [DOI] [PubMed] [Google Scholar]
  26. Scholler D. M., Wang M. Y., Hoffman B. M. Resonance Raman and EPR of nitrosyl human hemoglobin and chains, carp hemoglobin, and model compounds. Implications for the nitrosyl heme coordination state. J Biol Chem. 1979 May 25;254(10):4072–4078. [PubMed] [Google Scholar]
  27. Shaanan B. The iron-oxygen bond in human oxyhaemoglobin. Nature. 1982 Apr 15;296(5858):683–684. doi: 10.1038/296683a0. [DOI] [PubMed] [Google Scholar]
  28. Szabo A., Barron L. D. Letter: Resonance Raman studies of nitric oxide hemoglobin. J Am Chem Soc. 1975 Feb 5;97(3):660–662. doi: 10.1021/ja00836a043. [DOI] [PubMed] [Google Scholar]
  29. Trittelvitz E., Sick H., Gersonde K. Conformational isomers of nitrosyl-haemoglobin. An electron-spin-resonance study. Eur J Biochem. 1972 Dec 18;31(3):578–584. doi: 10.1111/j.1432-1033.1972.tb02568.x. [DOI] [PubMed] [Google Scholar]
  30. Tsubaki M., Nagai K., Kitagawa T. Resonance Raman spectra of myoglobins reconstituted with spirographis and isospirographis hemes and iron 2,4-diformylprotoporphyrin IX. Effect of formyl substitution at the heme periphery. Biochemistry. 1980 Jan 22;19(2):379–385. doi: 10.1021/bi00543a020. [DOI] [PubMed] [Google Scholar]
  31. Tsubaki M., Srivastava R. B., Yu N. T. Resonance Raman investigation of carbon monoxide bonding in (carbon monoxy)hemoglobin and -myoglobin: detection of Fe-CO stretching and Fe-C-O bending vibrations and influence of the quaternary structure change. Biochemistry. 1982 Mar 16;21(6):1132–1140. doi: 10.1021/bi00535a004. [DOI] [PubMed] [Google Scholar]
  32. Tsubaki M., Srivastava R. B., Yu N. T. Temperature dependence of resonance Raman spectra of metmyoglobin and methemoglobin azide. Detection of resonance-enhanced bound azide vibrations and iron-azide stretch. Biochemistry. 1981 Feb 17;20(4):946–952. doi: 10.1021/bi00507a047. [DOI] [PubMed] [Google Scholar]
  33. Tsubaki M., Yu N. T. Resonance Raman investigation of nitric oxide bonding in nitrosylhemoglobin A and -myoglobin: detection of bound N-O stretching and Fe-NO stretching vibrations from the hexacoordinated NO-heme complex. Biochemistry. 1982 Mar 16;21(6):1140–1144. doi: 10.1021/bi00535a005. [DOI] [PubMed] [Google Scholar]
  34. Walters M. A., Spiro T. G. Resonance raman spectroscopic studies of axial ligation in oxyhemoglobin, oxymyoglobin, and nitrosylmyoglobin. Biochemistry. 1982 Dec 21;21(26):6989–6995. doi: 10.1021/bi00269a057. [DOI] [PubMed] [Google Scholar]
  35. Wittenberg J. B., Noble R. W., Wittenberg B. A., Antonini E., Brunori M., Wyman J. Studies on the equilibria and kinetics of the reactions of peroxidase with ligands. II. The reaction of ferroperoxidase with oxygen. J Biol Chem. 1967 Feb 25;242(4):626–634. [PubMed] [Google Scholar]
  36. Yonetani T., Yamamoto H., Erman J. E., Leigh J. S., Jr, Reed G. H. Electromagnetic properties of hemoproteins. V. Optical and electron paramagnetic resonance characteristics of nitric oxide derivatives of metalloporphyrin-apohemoprotein complexes. J Biol Chem. 1972 Apr 25;247(8):2447–2455. [PubMed] [Google Scholar]
  37. Yu N. T., Kerr E. A., Ward B., Chang C. K. Resonance Raman detection of Fe-CO stretching and Fe-C-O bending vibrations in sterically hindered carbonmonoxy "strapped hemes". A structural probe of Fe-C-O distortion. Biochemistry. 1983 Sep 13;22(19):4534–4540. doi: 10.1021/bi00288a028. [DOI] [PubMed] [Google Scholar]
  38. Yu N. T., Tsubaki M. Resonance Raman spectra of manganese myoglobin and its azide complex. Assignment of a new charge-transfer band to azide (pi) to porphyrin (pi) transition. Biochemistry. 1980 Sep 30;19(20):4647–4653. doi: 10.1021/bi00561a017. [DOI] [PubMed] [Google Scholar]
  39. ZIJLSTRA W. G., van KAMPEN E. Standardization of hemoglobinometry. I. The extinction coefficient of hemiglobincyanide. Clin Chim Acta. 1960 Sep;5:719–726. doi: 10.1016/0009-8981(60)90014-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES