Abstract
Isoproterenol and other agonists readily dissociate from the beta-adrenergic receptor in turkey erythrocyte membranes. However, when a low concentration of deoxycholate is added, the receptor locks the prebound agonist; i.e., the rate of dissociation of the prebound agonist decreases drastically. The dissociation of prebound antagonists is slightly increased by deoxycholate. Locking, which is thus agonist specific, occurs in the cold, is reversed when detergent is removed from the membranes, and appears not to require the guanyl nucleotide binding protein of the adenylate cyclase system. It is suggested that this induced fit of a receptor to an agonist represents the specific conformational response that normally propagates in the receptor molecule in its interaction with the next component along the pathway of signal transmission.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aurbach G. D., Fedak S. A., Woodard C. J., Palmer J. S., Hauser D., Troxler F. Beta-adrenergic receptor: stereospecific interaction of iodinated beta-blocking agent with high affinity site. Science. 1974 Dec 27;186(4170):1223–1224. doi: 10.1126/science.186.4170.1223. [DOI] [PubMed] [Google Scholar]
- Cassel D., Selinger Z. Mechanism of adenylate cyclase activation through the beta-adrenergic receptor: catecholamine-induced displacement of bound GDP by GTP. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4155–4159. doi: 10.1073/pnas.75.9.4155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Citri Y., Schramm M. Probing of the coupling site of the beta-adrenergic receptor. Competition between different forms of the guanyl nucleotide binding protein for interaction with the receptor. J Biol Chem. 1982 Nov 25;257(22):13257–13262. [PubMed] [Google Scholar]
- Citri Y., Schramm M. Resolution, reconstitution and kinetics of the primary action of a hormone receptor. Nature. 1980 Sep 25;287(5780):297–300. doi: 10.1038/287297a0. [DOI] [PubMed] [Google Scholar]
- De Lean A., Stadel J. M., Lefkowitz R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem. 1980 Aug 10;255(15):7108–7117. [PubMed] [Google Scholar]
- Eckstein F., Cassel D., Levkovitz H., Lowe M., Selinger Z. Guanosine 5'-O-(2-thiodiphosphate). An inhibitor of adenylate cyclase stimulation by guanine nucleotides and fluoride ions. J Biol Chem. 1979 Oct 10;254(19):9829–9834. [PubMed] [Google Scholar]
- Eimerl S., Neufeld G., Korner M., Schramm M. Functional implantation of a solubilized beta-adrenergic receptor in the membrane of a cell. Proc Natl Acad Sci U S A. 1980 Feb;77(2):760–764. doi: 10.1073/pnas.77.2.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engel G., Hoyer D., Berthold R., Wagner H. (+/-)[125Iodo] cyanopindolol, a new ligand for beta-adrenoceptors: identification and quantitation of subclasses of beta-adrenoceptors in guinea pig. Naunyn Schmiedebergs Arch Pharmacol. 1981;317(4):277–285. doi: 10.1007/BF00501307. [DOI] [PubMed] [Google Scholar]
- Iyengar R., Birnbaumer L. Hormone receptor modulates the regulatory component of adenylyl cyclase by reducing its requirement for Mg2+ and enhancing its extent of activation by guanine nucleotides. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5179–5183. doi: 10.1073/pnas.79.17.5179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobsson B., Vauquelin G., Wesslau C., Smith U., Strosberg A. D. Distinction between two subpopulations of beta 1-adrenergic receptors in human adipose cells. Eur J Biochem. 1981 Feb;114(2):349–354. doi: 10.1111/j.1432-1033.1981.tb05154.x. [DOI] [PubMed] [Google Scholar]
- Kaslow H. R., Farfel Z., Johnson G. L., Bourne H. R. Adenylate cyclase assembled in vitro: cholera toxin substrates determine different patterns of regulation by isoproterenol and guanosine 5'-triphosphate. Mol Pharmacol. 1979 May;15(3):472–483. [PubMed] [Google Scholar]
- Keenan A. K., Gal A., Levitzki A. Reconstitution of the turkey erythrocyte adenylate cyclase sensitivity to 1-epinephrine upon re-insertion of the Lubrol solubilized components into phospholipid vesicles. Biochem Biophys Res Commun. 1982 Mar 30;105(2):615–623. doi: 10.1016/0006-291x(82)91479-6. [DOI] [PubMed] [Google Scholar]
- Korner M., Gilon C., Schramm M. Locking of hormone in the beta-adrenergic receptor by attack on a sulfhydryl in an associated component. J Biol Chem. 1982 Apr 10;257(7):3389–3396. [PubMed] [Google Scholar]
- Lad P. M., Nielsen T. B., Londos C., Preston M. S., Rodbell M. Independent mechanisms of adenosine activation and inhibition of the turkey erythrocyte adenylate cyclase system. J Biol Chem. 1980 Nov 25;255(22):10841–10846. [PubMed] [Google Scholar]
- Londos C., Salomon Y., Lin M. C., Harwood J. P., Schramm M., Wolff J., Rodbell M. 5'-Guanylylimidodiphosphate, a potent activator of adenylate cyclase systems in eukaryotic cells. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3087–3090. doi: 10.1073/pnas.71.8.3087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore W. V., Wolff J. Binding of prostaglandin E1 to beef thyroid membranes. J Biol Chem. 1973 Aug 25;248(16):5705–5711. [PubMed] [Google Scholar]
- Neufeld G., Schramm M., Weinberg N. Hybridization of adenylate cyclase components by membrane fusion and the effect of selective digestion by trypsin. J Biol Chem. 1980 Oct 10;255(19):9268–9274. [PubMed] [Google Scholar]
- Northup J. K., Smigel M. D., Gilman A. G. The guanine nucleotide activating site of the regulatory component of adenylate cyclase. Identification by ligand binding. J Biol Chem. 1982 Oct 10;257(19):11416–11423. [PubMed] [Google Scholar]
- Northup J. K., Sternweis P. C., Smigel M. D., Schleifer L. S., Ross E. M., Gilman A. G. Purification of the regulatory component of adenylate cyclase. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6516–6520. doi: 10.1073/pnas.77.11.6516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orly J., Schramm M. Fatty acids as modulators of membrane functions: catecholamine-activated adenylate cyclase of the turkey erythrocyte. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3433–3437. doi: 10.1073/pnas.72.9.3433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfeuffer T., Helmreich E. J. Activation of pigeon erythrocyte membrane adenylate cyclase by guanylnucleotide analogues and separation of a nucleotide binding protein. J Biol Chem. 1975 Feb 10;250(3):867–876. [PubMed] [Google Scholar]
- Rimon G., Hanski E., Levitzki A. Temperature dependence of beta receptor, adenosine receptor, and sodium fluoride stimulated adenylate cyclase from turkey erythrocytes. Biochemistry. 1980 Sep 16;19(19):4451–4460. doi: 10.1021/bi00560a011. [DOI] [PubMed] [Google Scholar]
- Rodbell M., Krans H. M., Pohl S. L., Birnbaumer L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanylnucleotides on binding of 125I-glucagon. J Biol Chem. 1971 Mar 25;246(6):1872–1876. [PubMed] [Google Scholar]
- Simpson I. A., Pfeuffer T. Modulation of beta-adrenergic agonist binding by guanylnucleotides in avian erythrocytes. FEBS Lett. 1980 Jun 16;115(1):113–117. doi: 10.1016/0014-5793(80)80738-1. [DOI] [PubMed] [Google Scholar]
- Stadel J. M., DeLean A., Lefkowitz R. J. A high affinity agonist . beta-adrenergic receptor complex is an intermediate for catecholamine stimulation of adenylate cyclase in turkey and frog erythrocyte membranes. J Biol Chem. 1980 Feb 25;255(4):1436–1441. [PubMed] [Google Scholar]
- Weiland G. A., Minneman K. P., Molinoff P. B. Fundamental difference between the molecular interactions of agonists and antagonists with the beta-adrenergic receptor. Nature. 1979 Sep 13;281(5727):114–117. doi: 10.1038/281114a0. [DOI] [PubMed] [Google Scholar]