Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Nov;80(21):6460–6464. doi: 10.1073/pnas.80.21.6460

Seminal vesicle secretion IV gene: allelic difference due to a series of 20-base-pair direct tandem repeats within an intron.

S E Harris, P E Mansson, D B Tully, B Burkhart
PMCID: PMC390133  PMID: 6579532

Abstract

The rat seminal vesicle secretion IV (SVS IV) gene was isolated from a lambda Charon 4A library. The SVS IV gene transcription unit was found to be on one 3.3-kilobase (kb) EcoRI fragment. Restriction mapping and DNA sequence analysis demonstrated that the entire length of the SVS IV transcription unit is 1,930 base pairs (bp) and contains two introns. The 3.3-kb EcoRI fragment contains 144 bp of 5'-flanking region. At -113 bp from the presumed transcription initiation site an interesting structure with perfect dyad symmetry is noted. In another lambda clone, a 3.5-kb EcoRI fragment was isolated that contains the SVS IV gene and was shown to be identical to the 3.3-kb EcoRI fragment except for 180 bp of DNA in the second intron. The extra DNA consists of several (8-10) 20-bp tandem repeats flanked on each side by seven or eight copies of this same 20-bp repeat. Fisher X Sprague-Dawley hybrid rats, which contain both the EcoRI 3.5-kb form and the 3.3-kb form of the SVS IV gene, were crossed with each other. Analysis of the F1 generation demonstrated that the presence or absence of the 180-bp intronic insertion in the SVS IV gene defines an allelic difference. This report also presents the DNA sequence of the transcription unit and flanking regions of the SVS IV gene.

Full text

PDF
6460

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benton W. D., Davis R. W. Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 1977 Apr 8;196(4286):180–182. doi: 10.1126/science.322279. [DOI] [PubMed] [Google Scholar]
  2. Davidson E. H., Jacobs H. T., Britten R. J. Very short repeats and coordinate induction of genes. Nature. 1983 Feb 10;301(5900):468–470. doi: 10.1038/301468a0. [DOI] [PubMed] [Google Scholar]
  3. Grunstein M., Hogness D. S. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3961–3965. doi: 10.1073/pnas.72.10.3961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Harland R. M., Weintraub H., McKnight S. L. Transcription of DNA injected into Xenopus oocytes is influenced by template topology. Nature. 1983 Mar 3;302(5903):38–43. doi: 10.1038/302038a0. [DOI] [PubMed] [Google Scholar]
  5. Higgins S. J., Burchell J. M., Mainwaring W. I. Androgen-dependent synthesis of basic secretory proteins by the rat seminal vesicle. Biochem J. 1976 Aug 15;158(2):271–282. doi: 10.1042/bj1580271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hobbs A. A., Rosen J. M. Sequence of rat alpha- and gamma-casein mRNAs: evolutionary comparison of the calcium-dependent rat casein multigene family. Nucleic Acids Res. 1982 Dec 20;10(24):8079–8098. doi: 10.1093/nar/10.24.8079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jahn C. L., Hutchison C. A., 3rd, Phillips S. J., Weaver S., Haigwood N. L., Voliva C. F., Edgell M. H. DNA sequence organization of the beta-globin complex in the BALB/c mouse. Cell. 1980 Aug;21(1):159–168. doi: 10.1016/0092-8674(80)90123-3. [DOI] [PubMed] [Google Scholar]
  8. Kandala J. C., Kistler M. K., Lawther R. P., Kistler W. S. Characterization of a genomic clone for rat seminal vesicle secretory protein IV. Nucleic Acids Res. 1983 May 25;11(10):3169–3186. doi: 10.1093/nar/11.10.3169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kistler M. K., Taylor R. E., Jr, Kandala J. C., Kistler W. S. Isolation of recombinant plasmids containing structural gene sequences for rat seminal vesicle secretory proteins IV and V. Biochem Biophys Res Commun. 1981 Apr 30;99(4):1161–1166. doi: 10.1016/0006-291x(81)90740-3. [DOI] [PubMed] [Google Scholar]
  10. Malek L. T., Eschenfeldt W. H., Munns T. W., Rhoads R. E. Heterogeneity of the 5' terminus of hen ovalbumin messenger ribonucleic acid. Nucleic Acids Res. 1981 Apr 10;9(7):1657–1673. doi: 10.1093/nar/9.7.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mansson P. E., Carter D. B., Silverberg A. B., Tully D. B., Harris S. E. Isolation and partial purification of the major abundant class rat seminal vesicle poly(A+)-messenger RNA. Nucleic Acids Res. 1979 Nov 24;7(6):1553–1565. doi: 10.1093/nar/7.6.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mansson P. E., Sugino A., Harris S. E. Use of a cloned double stranded cDNA coding for a major androgen dependent protein in rat seminal vesicle secretion: the effect of testosterone in gene expression. Nucleic Acids Res. 1981 Feb 25;9(4):935–946. doi: 10.1093/nar/9.4.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McDonald C., Williams L., McTurk P., Fuller F., McIntosh E., Higgins S. Isolation and characterisation of genes for androgen-responsive secretory proteins of rat seminal vesicles. Nucleic Acids Res. 1983 Feb 25;11(4):917–930. doi: 10.1093/nar/11.4.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ostrowski M. C., Kistler M. K., Kistler W. S. Effect of castration on the synthesis of seminal vesicle secretory protein IV in the rat. Biochemistry. 1982 Jul 20;21(15):3525–3529. doi: 10.1021/bi00258a001. [DOI] [PubMed] [Google Scholar]
  16. Ostrowski M. C., Kistler M. K., Kistler W. S. Purification and cell-free synthesis of a major protein from rat seminal vesicle secretion. A potential marker for androgen action. J Biol Chem. 1979 Jan 25;254(2):383–390. [PubMed] [Google Scholar]
  17. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sharp P. A. Conversion of RNA to DNA in mammals: Alu-like elements and pseudogenes. Nature. 1983 Feb 10;301(5900):471–472. doi: 10.1038/301471a0. [DOI] [PubMed] [Google Scholar]
  19. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  20. Stumph W. E., Baez M., Beattie W. G., Tsai M. J., O'Malley B. W. Characterization of deoxyribonucleic acid sequences at the 5' and 3' borders of the 100 kilobase pair ovalbumin gene domain. Biochemistry. 1983 Jan 18;22(2):306–315. doi: 10.1021/bi00271a012. [DOI] [PubMed] [Google Scholar]
  21. Stumph W. E., Kristo P., Tsai M. J., O'Malley B. W. A chicken middle-repetitive DNA sequence which shares homology with mammalian ubiquitous repeats. Nucleic Acids Res. 1981 Oct 24;9(20):5383–5397. doi: 10.1093/nar/9.20.5383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Teng C. T., Harris S. E. The seminal vesicle secretion IV gene: detection of S1 nuclease-sensitive sites in supercoiled plasmid pSVS 3.3. DNA. 1983;2(2):105–111. doi: 10.1089/dna.1983.2.105. [DOI] [PubMed] [Google Scholar]
  23. Woo S. L., Dugaiczyk A., Tsai M. J., Lai E. C., Catterall J. F., O'Malley B. W. The ovalbumin gene: cloning of the natural gene. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3688–3692. doi: 10.1073/pnas.75.8.3688. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES