Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Nov;80(21):6480–6484. doi: 10.1073/pnas.80.21.6480

Keratin synthesis in normal mouse epithelia and in squamous cell carcinomas: evidence in tumors for masked mRNA species coding for high molecular weight keratin polypeptides.

H Winter, J Schweizer
PMCID: PMC390137  PMID: 6195657

Abstract

Transplantable mouse squamous cell carcinomas (SCC), originally derived either from back skin or forestomach epithelium, do not synthesize high molecular weight keratin polypeptides [greater than 60 kilodaltons (kDa)] involved in the process of terminal differentiation in the corresponding normal tissues. The in vivo tumor keratin spectra consist of only low molecular weight keratin subunits at 60, 58, 52, 50, 47, and 46 kDa, each encoded by its own mRNA and encountered also in normal epidermis and forestomach epithelium. In addition, both tumors express a mRNA-dependent 40-kDa protein, whereas a 56-kDa protein and its mRNA are selectively found only in the forestomach tumor. Translation of mRNAs from both tumors in a cell-free system does not only generate analogues of the in vivo tumor keratin polypeptides, but also both SCC possess an additional mRNA coding in vitro for a 67-kDa keratin subunit that is not expressed, however, in the carcinomas in vivo. The identity of this in vitro synthesized keratin member with a 67-kDa keratin polypeptide of both normal epidermis and forestomach epithelium was confirmed by comparison of charge properties and peptide mapping. With regard to this particular keratin polypeptide, the tumors are obviously able to sequester the polypeptide's mRNA in an untranslatable state in the cells.

Full text

PDF
6480

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez O. M., Mertz P. M., Smerbeck R. V., Eaglstein W. H. The healing of superficial skin wounds is stimulated by external electrical current. J Invest Dermatol. 1983 Aug;81(2):144–148. doi: 10.1111/1523-1747.ep12543498. [DOI] [PubMed] [Google Scholar]
  2. Baden H. P., Kubilus J., Argyris T. S. Modification of polypeptide composition in keratinocyte fibrous protein. J Invest Dermatol. 1980 Nov;75(5):383–387. doi: 10.1111/1523-1747.ep12523622. [DOI] [PubMed] [Google Scholar]
  3. Banks-Schlegel S. P., Howley P. M. Differentiation of human epidermal cells transformed by SV40. J Cell Biol. 1983 Feb;96(2):330–337. doi: 10.1083/jcb.96.2.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Banks-Schlegel S. P. Keratin alterations during embryonic epidermal differentiation: a presage of adult epidermal maturation. J Cell Biol. 1982 Jun;93(3):551–559. doi: 10.1083/jcb.93.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bladon P. T., Bowden P. E., Cunliffe W. J., Wood E. J. Prekeratin biosynthesis in human scalp epidermis. Biochem J. 1982 Oct 15;208(1):179–187. doi: 10.1042/bj2080179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  7. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  8. Darnell J. E., Jr Variety in the level of gene control in eukaryotic cells. Nature. 1982 Jun 3;297(5865):365–371. doi: 10.1038/297365a0. [DOI] [PubMed] [Google Scholar]
  9. Doran T. I., Vidrich A., Sun T. T. Intrinsic and extrinsic regulation of the differentiation of skin, corneal and esophageal epithelial cells. Cell. 1980 Nov;22(1 Pt 1):17–25. doi: 10.1016/0092-8674(80)90150-6. [DOI] [PubMed] [Google Scholar]
  10. Franke W. W., Schiller D. L., Moll R., Winter S., Schmid E., Engelbrecht I., Denk H., Krepler R., Platzer B. Diversity of cytokeratins. Differentiation specific expression of cytokeratin polypeptides in epithelial cells and tissues. J Mol Biol. 1981 Dec 25;153(4):933–959. doi: 10.1016/0022-2836(81)90460-5. [DOI] [PubMed] [Google Scholar]
  11. Fuchs E., Green H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell. 1980 Apr;19(4):1033–1042. doi: 10.1016/0092-8674(80)90094-x. [DOI] [PubMed] [Google Scholar]
  12. Fuchs E., Green H. Multiple keratins of cultured human epidermal cells are translated from different mRNA molecules. Cell. 1979 Jul;17(3):573–582. doi: 10.1016/0092-8674(79)90265-4. [DOI] [PubMed] [Google Scholar]
  13. Fuchs E., Green H. Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell. 1981 Sep;25(3):617–625. doi: 10.1016/0092-8674(81)90169-0. [DOI] [PubMed] [Google Scholar]
  14. Fuchs E., Green H. The expression of keratin genes in epidermis and cultured epidermal cells. Cell. 1978 Nov;15(3):887–897. doi: 10.1016/0092-8674(78)90273-8. [DOI] [PubMed] [Google Scholar]
  15. Goerttler K., Loehrke H. Diaplacental carcinogenesis: initiation with the carcinogens dimethylbenzanthracene (DMBA) and urethane during fetal life and postnatal promotion with the phorbol ester TPA in a modified 2-stage Berenblum/Mottram experiment. Virchows Arch A Pathol Anat Histol. 1976 Nov 22;372(1):29–38. doi: 10.1007/BF00429714. [DOI] [PubMed] [Google Scholar]
  16. Goerttler K., Loehrke H., Schweizer J., Hesse B. Systemic two-stage carcinogenesis in the epithelium of the forestomach of mice using 7,12-dimethylbenz(a)anthracene as initiator and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate as promoter. Cancer Res. 1979 Apr;39(4):1293–1297. [PubMed] [Google Scholar]
  17. Kubilus J., Baden H. P., McGilvray N. Filamentous protein of basal cell epithelioma: characteristics in vivo and in vitro. J Natl Cancer Inst. 1980 Nov;65(5):869–875. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Laskin J. D., Mufson R. A., Piccinini L., Engelhardt D. L., Weinstein I. B. Effects of the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate on newly synthesized proteins in mouse epidermis. Cell. 1981 Aug;25(2):441–449. doi: 10.1016/0092-8674(81)90062-3. [DOI] [PubMed] [Google Scholar]
  20. Lee L. D., Kubilus J., Baden H. P. Intraspecies heterogeneity of epidermal keratins isolated from bovine hoof and snout. Biochem J. 1979 Jan 1;177(1):187–196. doi: 10.1042/bj1770187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Milstone L. M., McGuire J. Different polypeptides form the intermediate filaments in bovine hoof and esophageal epithelium and in aortic endothelium. J Cell Biol. 1981 Feb;88(2):312–316. doi: 10.1083/jcb.88.2.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982 Nov;31(1):11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
  23. O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
  24. Oakley B. R., Kirsch D. R., Morris N. R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem. 1980 Jul 1;105(2):361–363. doi: 10.1016/0003-2697(80)90470-4. [DOI] [PubMed] [Google Scholar]
  25. Ochoa S., de Haro C. Regulation of protein synthesis in eukaryotes. Annu Rev Biochem. 1979;48:549–580. doi: 10.1146/annurev.bi.48.070179.003001. [DOI] [PubMed] [Google Scholar]
  26. Revel M., Groner Y. Post-transcriptional and translational controls of gene expression in eukaryotes. Annu Rev Biochem. 1978;47:1079–1126. doi: 10.1146/annurev.bi.47.070178.005243. [DOI] [PubMed] [Google Scholar]
  27. Roop D. R., Hawley-Nelson P., Cheng C. K., Yuspa S. H. Keratin gene expression in mouse epidermis and cultured epidermal cells. Proc Natl Acad Sci U S A. 1983 Feb;80(3):716–720. doi: 10.1073/pnas.80.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schweizer J., Goerttler K. Synthesis in vitro of keratin polypeptides directed by mRNA isolated from newborn and adult mouse epidermis. Eur J Biochem. 1980 Nov;112(2):243–249. doi: 10.1111/j.1432-1033.1980.tb07200.x. [DOI] [PubMed] [Google Scholar]
  29. Schweizer J., Winter H. Changes in regional keratin polypeptide patterns during phorbol ester-mediated reversible and permanently sustained hyperplasia of mouse epidermis. Cancer Res. 1982 Apr;42(4):1517–1529. [PubMed] [Google Scholar]
  30. Schweizer J., Winter H. Keratin polypeptide analysis in fetal and in terminally differentiating newborn mouse epidermis. Differentiation. 1982;22(1):19–24. doi: 10.1111/j.1432-0436.1982.tb01219.x. [DOI] [PubMed] [Google Scholar]
  31. Skerrow D., Skerrow C. J. Tonofilament differentiation in human epidermis, isolation and polypeptide chain composition of keratinocyte subpopulations. Exp Cell Res. 1983 Jan;143(1):27–35. doi: 10.1016/0014-4827(83)90105-2. [DOI] [PubMed] [Google Scholar]
  32. Winter H., Schweizer J. Carcinoma-specific keratin polypeptide patterns in keratinizing epithelia of rodents : independence of species- and tissue-specific variations. Carcinogenesis. 1981;2(7):613–621. doi: 10.1093/carcin/2.7.613. [DOI] [PubMed] [Google Scholar]
  33. Winter H., Schweizer J., Goerttler K. Keratin polypeptide composition as a biochemical tool for the discrimination of benign and malignant epithelial lesions in man. Arch Dermatol Res. 1983;275(1):27–34. doi: 10.1007/BF00516551. [DOI] [PubMed] [Google Scholar]
  34. Winter H., Schweizer J., Goerttler K. Keratins as markers of malignancy in mouse epidermal tumors. Carcinogenesis. 1980 May;1(5):391–398. doi: 10.1093/carcin/1.5.391. [DOI] [PubMed] [Google Scholar]
  35. Woodcock-Mitchell J., Eichner R., Nelson W. G., Sun T. T. Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies. J Cell Biol. 1982 Nov;95(2 Pt 1):580–588. doi: 10.1083/jcb.95.2.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wu Y. J., Rheinwald J. G. A new small (40 kd) keratin filament protein made by some cultured human squamous cell carcinomas. Cell. 1981 Sep;25(3):627–635. doi: 10.1016/0092-8674(81)90170-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES