Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jun 25;93(13):6291–6296. doi: 10.1073/pnas.93.13.6291

Gene gun-mediated skin transfection with interleukin 12 gene results in regression of established primary and metastatic murine tumors.

A L Rakhmilevich 1, J Turner 1, M J Ford 1, D McCabe 1, W H Sun 1, P M Sondel 1, K Grota 1, N S Yang 1
PMCID: PMC39015  PMID: 8692808

Abstract

Particle-mediated (gene gun) in vivo delivery of the murine interleukin 12 (IL-12) gene in an expression plasmid was evaluated for antitumor activity. Transfer of IL-12 cDNA into epidermal cells overlying an implanted intradermal tumor resulted in detectable levels (266.0 +/- 27.8 pg) of the transgenic protein at the skin tissue treatment site. Despite these low levels of transgenic IL-12, complete regression of established tumors (0.4-0.8 cm in diameter) was achieved in mice bearing Renca, MethA, SA-1, or L5178Y syngeneic tumors. Only one to four treatments with IL-12 cDNA-coated particles, starting on day 7 after tumor cell implantation, were required to achieve complete tumor regression. This antitumor effect was CD8+ T cell-dependent and led to the generation of tumor-specific immunological memory. By using a metastatic P815 tumor model, we further showed that a delivery of IL-12 cDNA into the skin overlying an advanced intradermal tumor, followed by tumor excision and three additional IL-12 gene transfections, could significantly inhibit systemic metastases, resulting in extended survival of test mice. These results suggest that gene gun-mediated in vivo delivery of IL-12 cDNA should be further developed for potential clinical testing as an approach for human cancer gene therapy.

Full text

PDF
6291

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews J. V., Schoof D. D., Bertagnolli M. M., Peoples G. E., Goedegebuure P. S., Eberlein T. J. Immunomodulatory effects of interleukin-12 on human tumor-infiltrating lymphocytes. J Immunother Emphasis Tumor Immunol. 1993 Jul;14(1):1–10. doi: 10.1097/00002371-199307000-00001. [DOI] [PubMed] [Google Scholar]
  2. Bear H. D. Tumor-specific suppressor T-cells which inhibit the in vitro generation of cytolytic T-cells from immune and early tumor-bearing host spleens. Cancer Res. 1986 Apr;46(4 Pt 1):1805–1812. [PubMed] [Google Scholar]
  3. Brunda M. J., Luistro L., Warrier R. R., Wright R. B., Hubbard B. R., Murphy M., Wolf S. F., Gately M. K. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med. 1993 Oct 1;178(4):1223–1230. doi: 10.1084/jem.178.4.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chan S. H., Perussia B., Gupta J. W., Kobayashi M., Pospísil M., Young H. A., Wolf S. F., Young D., Clark S. C., Trinchieri G. Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers. J Exp Med. 1991 Apr 1;173(4):869–879. doi: 10.1084/jem.173.4.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheng L., Ziegelhoffer P. R., Yang N. S. In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated by using particle bombardment. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4455–4459. doi: 10.1073/pnas.90.10.4455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Desai B. B., Quinn P. M., Wolitzky A. G., Mongini P. K., Chizzonite R., Gately M. K. IL-12 receptor. II. Distribution and regulation of receptor expression. J Immunol. 1992 May 15;148(10):3125–3132. [PubMed] [Google Scholar]
  7. Dye E. S. The antimetastatic function of concomitant antitumor immunity. II. Evidence that the generation of Ly-1+2+ effector T cells temporarily causes the destruction of already disseminated tumor cells. J Immunol. 1986 Feb 15;136(4):1510–1515. [PubMed] [Google Scholar]
  8. Gubler U., Chua A. O., Schoenhaut D. S., Dwyer C. M., McComas W., Motyka R., Nabavi N., Wolitzky A. G., Quinn P. M., Familletti P. C. Coexpression of two distinct genes is required to generate secreted bioactive cytotoxic lymphocyte maturation factor. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4143–4147. doi: 10.1073/pnas.88.10.4143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kobayashi M., Fitz L., Ryan M., Hewick R. M., Clark S. C., Chan S., Loudon R., Sherman F., Perussia B., Trinchieri G. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med. 1989 Sep 1;170(3):827–845. doi: 10.1084/jem.170.3.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Martinotti A., Stoppacciaro A., Vagliani M., Melani C., Spreafico F., Wysocka M., Parmiani G., Trinchieri G., Colombo M. P. CD4 T cells inhibit in vivo the CD8-mediated immune response against murine colon carcinoma cells transduced with interleukin-12 genes. Eur J Immunol. 1995 Jan;25(1):137–146. doi: 10.1002/eji.1830250124. [DOI] [PubMed] [Google Scholar]
  11. Mills C. D., North R. J. Ly-1+2- suppressor T cells inhibit the expression of passively transferred antitumor immunity by suppressing the generation of cytolytic T cells. Transplantation. 1985 Feb;39(2):202–208. doi: 10.1097/00007890-198502000-00018. [DOI] [PubMed] [Google Scholar]
  12. Mu J., Zou J. P., Yamamoto N., Tsutsui T., Tai X. G., Kobayashi M., Herrmann S., Fujiwara H., Hamaoka T. Administration of recombinant interleukin 12 prevents outgrowth of tumor cells metastasizing spontaneously to lung and lymph nodes. Cancer Res. 1995 Oct 1;55(19):4404–4408. [PubMed] [Google Scholar]
  13. Nabors G. S., Afonso L. C., Farrell J. P., Scott P. Switch from a type 2 to a type 1 T helper cell response and cure of established Leishmania major infection in mice is induced by combined therapy with interleukin 12 and Pentostam. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3142–3146. doi: 10.1073/pnas.92.8.3142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nastala C. L., Edington H. D., McKinney T. G., Tahara H., Nalesnik M. A., Brunda M. J., Gately M. K., Wolf S. F., Schreiber R. D., Storkus W. J. Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J Immunol. 1994 Aug 15;153(4):1697–1706. [PubMed] [Google Scholar]
  15. North R. J., Bursuker I. Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly-1+2- suppressor T cells down-regulate the generation of Ly-1-2+ effector T cells. J Exp Med. 1984 May 1;159(5):1295–1311. doi: 10.1084/jem.159.5.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. North R. J., Dye E. S. Ly 1+2- suppressor T cells down-regulate the generation of Ly 1-2+ effector T cells during progressive growth of the P815 mastocytoma. Immunology. 1985 Jan;54(1):47–56. [PMC free article] [PubMed] [Google Scholar]
  17. North R. J. The therapeutic significance of concomitant antitumor immunity. I. LY-1-2+ T cells from mice with a progressive tumor can cause regression of an established tumor in gamma-irradiated recipients. Cancer Immunol Immunother. 1984;18(2):69–74. doi: 10.1007/BF00205736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Orange J. S., Salazar-Mather T. P., Opal S. M., Spencer R. L., Miller A. H., McEwen B. S., Biron C. A. Mechanism of interleukin 12-mediated toxicities during experimental viral infections: role of tumor necrosis factor and glucocorticoids. J Exp Med. 1995 Mar 1;181(3):901–914. doi: 10.1084/jem.181.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rajagopalan L. E., Burkholder J. K., Turner J., Culp J., Yang N. S., Malter J. S. Granulocyte-macrophage colony-stimulating factor mRNA stabilization enhances transgenic expression in normal cells and tissues. Blood. 1995 Oct 1;86(7):2551–2558. [PubMed] [Google Scholar]
  20. Rakhmilevich A. L. Evidence that gamma delta T cells play a limited role in resistance to murine listeriosis. Immunology. 1994 Dec;83(4):524–531. [PMC free article] [PubMed] [Google Scholar]
  21. Rakhmilevich A. L., North R. J., Dye E. S. Presence of CD4+ T suppressor cells in mice rendered unresponsive to tumor antigens by intravenous injection of irradiated tumor cells. Int J Cancer. 1993 Sep 9;55(2):338–343. doi: 10.1002/ijc.2910550226. [DOI] [PubMed] [Google Scholar]
  22. Rakhmilevich A. L., North R. J. Elimination of CD4+ T cells in mice bearing an advanced sarcoma augments the antitumor action of interleukin-2. Cancer Immunol Immunother. 1994 Feb;38(2):107–112. doi: 10.1007/BF01526205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schmitt D. A., Owen-Schaub L., Ullrich S. E. Effect of IL-12 on immune suppression and suppressor cell induction by ultraviolet radiation. J Immunol. 1995 May 15;154(10):5114–5120. [PubMed] [Google Scholar]
  24. Schoenhaut D. S., Chua A. O., Wolitzky A. G., Quinn P. M., Dwyer C. M., McComas W., Familletti P. C., Gately M. K., Gubler U. Cloning and expression of murine IL-12. J Immunol. 1992 Jun 1;148(11):3433–3440. [PubMed] [Google Scholar]
  25. Sciencescope. Science. 1995 Jun 16;268(5217):1555–1555. doi: 10.1126/science.268.5217.1555. [DOI] [PubMed] [Google Scholar]
  26. Sun W. H., Burkholder J. K., Sun J., Culp J., Turner J., Lu X. G., Pugh T. D., Ershler W. B., Yang N. S. In vivo cytokine gene transfer by gene gun reduces tumor growth in mice. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2889–2893. doi: 10.1073/pnas.92.7.2889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tahara H., Zeh H. J., 3rd, Storkus W. J., Pappo I., Watkins S. C., Gubler U., Wolf S. F., Robbins P. D., Lotze M. T. Fibroblasts genetically engineered to secrete interleukin 12 can suppress tumor growth and induce antitumor immunity to a murine melanoma in vivo. Cancer Res. 1994 Jan 1;54(1):182–189. [PubMed] [Google Scholar]
  28. Tahara H., Zitvogel L., Storkus W. J., Zeh H. J., 3rd, McKinney T. G., Schreiber R. D., Gubler U., Robbins P. D., Lotze M. T. Effective eradication of established murine tumors with IL-12 gene therapy using a polycistronic retroviral vector. J Immunol. 1995 Jun 15;154(12):6466–6474. [PubMed] [Google Scholar]
  29. Wolf S. F., Temple P. A., Kobayashi M., Young D., Dicig M., Lowe L., Dzialo R., Fitz L., Ferenz C., Hewick R. M. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J Immunol. 1991 May 1;146(9):3074–3081. [PubMed] [Google Scholar]
  30. Yang N. S., Sun W. H. Gene gun and other non-viral approaches for cancer gene therapy. Nat Med. 1995 May;1(5):481–483. doi: 10.1038/nm0595-481. [DOI] [PubMed] [Google Scholar]
  31. Zeh H. J., 3rd, Hurd S., Storkus W. J., Lotze M. T. Interleukin-12 promotes the proliferation and cytolytic maturation of immune effectors: implications for the immunotherapy of cancer. J Immunother Emphasis Tumor Immunol. 1993 Aug;14(2):155–161. doi: 10.1097/00002371-199308000-00012. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES