Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Oct;80(19):5936–5940. doi: 10.1073/pnas.80.19.5936

Ontophyletics of the nervous system: development of the corpus callosum and evolution of axon tracts.

M J Katz, R J Lasek, J Silver
PMCID: PMC390192  PMID: 6577462

Abstract

The evolution of nervous systems has included significant changes in the axon tracts of the central nervous system. These evolutionary changes required changes in axonal growth in embryos. During development, many axons reach their targets by following guidance cues that are organized as pathways in the embryonic substrate, and the overall pattern of the major axon tracts in the adult can be traced back to the fundamental pattern of such substrate pathways. Embryological and comparative anatomical studies suggest that most axon tracts, such as the anterior commissure, have evolved by the modified use of preexisting substrate pathways. On the other hand, recent developmental studies suggest that a few entirely new substrate pathways have arisen during evolution; these apparently provided opportunities for the formation of completely new axon tracts. The corpus callosum, which is found only in placental mammals, may be such a truly new axon tract. We propose that the evolution of the corpus callosum is founded on the emergence of a new preaxonal substrate pathway, the "glial sling," which bridges the two halves of the embryonic forebrain only in placental mammals.

Full text

PDF
5936

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ATTARDI D. G., SPERRY R. W. Preferential selection of central pathways by regenerating optic fibers. Exp Neurol. 1963 Jan;7:46–64. doi: 10.1016/0014-4886(63)90093-1. [DOI] [PubMed] [Google Scholar]
  2. BERGQUIST H., KALLEN B. Notes on the early histogenesis and morphogenesis of the central nervous system in vertebrates. J Comp Neurol. 1954 Jun;100(3):627–659. doi: 10.1002/cne.901000308. [DOI] [PubMed] [Google Scholar]
  3. Caviness V. S., Jr, Rakic P. Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci. 1978;1:297–326. doi: 10.1146/annurev.ne.01.030178.001501. [DOI] [PubMed] [Google Scholar]
  4. Caviness V. S., Jr, Yorke C. H., Jr Interhemispheric neocortical connections of the corpus callosum in the reeler mutant mouse: a study based on anterograde and retrograde methods. J Comp Neurol. 1976 Dec 15;170(4):449–459. doi: 10.1002/cne.901700405. [DOI] [PubMed] [Google Scholar]
  5. Easter S. S., Jr, Rusoff A. C., Kish P. E. The growth and organization of the optic nerve and tract in juvenile and adult goldfish. J Neurosci. 1981 Aug;1(8):793–811. doi: 10.1523/JNEUROSCI.01-08-00793.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ebbesson S. O. The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res. 1980;213(2):179–212. doi: 10.1007/BF00234781. [DOI] [PubMed] [Google Scholar]
  7. Ebner F. F., Myers R. E. Distribution of corpus callosum and anterior commissure in cat and raccoon. J Comp Neurol. 1965 Jun;124(3):353–365. doi: 10.1002/cne.901240306. [DOI] [PubMed] [Google Scholar]
  8. Faucette J. R. The olfactory bulb and medial hemisphere wall of the rat-fish, Chimaera. J Comp Neurol. 1969 Dec;137(4):377–405. doi: 10.1002/cne.901370402. [DOI] [PubMed] [Google Scholar]
  9. Fujisawa H., Tani N., Watanabe K., Ibata Y. Branching of regenerating retinal axons and preferential selection of appropriate branches for specific neuronal connection in the newt. Dev Biol. 1982 Mar;90(1):43–57. doi: 10.1016/0012-1606(82)90210-x. [DOI] [PubMed] [Google Scholar]
  10. Goldman P. S., Nauta W. J. Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey. Brain Res. 1977 Feb 25;122(3):393–413. doi: 10.1016/0006-8993(77)90453-x. [DOI] [PubMed] [Google Scholar]
  11. Gould H. J., 3rd, Ebner F. F. Connections of the visual cortex in the hedgehog (Paraechinus hypomelas). II. Corticocortical projections. J Comp Neurol. 1978 Feb 1;177(3):473–502. doi: 10.1002/cne.901770308. [DOI] [PubMed] [Google Scholar]
  12. Heath C. J., Jones E. G. Interhemispheric pathways in the absence of a corpus callosum. An experimental study of commissural connexions in the marsupial phalanger. J Anat. 1971 Jul;109(Pt 2):253–270. [PMC free article] [PubMed] [Google Scholar]
  13. Hedreen J. C., Yin T. C. Homotopic and heterotopic callosal afferents of caudal inferior parietal lobule in Macaca mulatta. J Comp Neurol. 1981 Apr 20;197(4):605–621. doi: 10.1002/cne.901970405. [DOI] [PubMed] [Google Scholar]
  14. Holley J. A. Early development of the circumferential axonal pathway in mouse and chick spinal cord. J Comp Neurol. 1982 Mar 10;205(4):371–382. doi: 10.1002/cne.902050406. [DOI] [PubMed] [Google Scholar]
  15. Holley J. A., Nornes H. O., Morita M. Guidance of neuritic growth in the transverse plane of embryonic mouse spinal cord. J Comp Neurol. 1982 Mar 10;205(4):360–370. doi: 10.1002/cne.902050405. [DOI] [PubMed] [Google Scholar]
  16. Innocenti G. M., Frost D. O. Effects of visual experience on the maturation of the efferent system to the corpus callosum. Nature. 1979 Jul 19;280(5719):231–234. doi: 10.1038/280231a0. [DOI] [PubMed] [Google Scholar]
  17. Innocenti G. M., Frost D. O. The postnatal development of visual callosal connections in the absence of visual experience or of the eyes. Exp Brain Res. 1980;39(4):365–375. doi: 10.1007/BF00239301. [DOI] [PubMed] [Google Scholar]
  18. Innocenti G. M. Growth and reshaping of axons in the establishment of visual callosal connections. Science. 1981 May 15;212(4496):824–827. doi: 10.1126/science.7221566. [DOI] [PubMed] [Google Scholar]
  19. Innocenti G. M., Manzoni T., Spidalieri G. Patterns of the somesthetic messages transferred through the corpus callosum. Exp Brain Res. 1974 Mar 29;19(5):447–466. doi: 10.1007/BF00236110. [DOI] [PubMed] [Google Scholar]
  20. Ivy G. O., Killackey H. P. Ontogenetic changes in the projections of neocortical neurons. J Neurosci. 1982 Jun;2(6):735–743. doi: 10.1523/JNEUROSCI.02-06-00735.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ivy G. O., Killackey H. P. The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex. J Comp Neurol. 1981 Jan 20;195(3):367–389. doi: 10.1002/cne.901950302. [DOI] [PubMed] [Google Scholar]
  22. JACOBSON S. INTRALAMINAR, INTERLAMINAR, CALLOSAL AND THALAMOCORTICAL CONNECTIONS IN FRONTAL AND PARIETAL AREAS OF THE ALBINO RAT CEREBRAL CORTEX. J Comp Neurol. 1965 Feb;124:131–145. doi: 10.1002/cne.901240111. [DOI] [PubMed] [Google Scholar]
  23. Jane J. A., Schroeder D. M. A comparison of dorsal column nuclei and spinal afferents in the European hedgehog (Erinaceus europeaus). Exp Neurol. 1971 Jan;30(1):1–17. doi: 10.1016/0014-4886(71)90216-0. [DOI] [PubMed] [Google Scholar]
  24. Jones E. G., Powell T. P. The commissural connexions of the somatic sensory cortex in the cat. J Anat. 1968 Nov;103(Pt 3):433–455. [PMC free article] [PubMed] [Google Scholar]
  25. Karol E. A., Pandya D. N. The distribution of the corpus callosum in the Rhesus monkey. Brain. 1971;94(3):471–486. doi: 10.1093/brain/94.3.471. [DOI] [PubMed] [Google Scholar]
  26. Katz M. J., Grenander U. Developmental matching and the numerical matching hypothesis for neuronal cell death. J Theor Biol. 1982 Oct 7;98(3):501–517. doi: 10.1016/0022-5193(82)90133-3. [DOI] [PubMed] [Google Scholar]
  27. Katz M. J., Lasek R. J. Evolution of the nervous system: role of ontogenetic mechanisms in the evolution of matching populations. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1349–1352. doi: 10.1073/pnas.75.3.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Katz M. J., Lasek R. J. Invited review: guidance cue patterns and cell migration in multicellular organisms. Cell Motil. 1980;1(1):141–157. doi: 10.1002/cm.970010111. [DOI] [PubMed] [Google Scholar]
  29. Katz M. J., Lasek R. J., Kaiserman-Abramof I. R. Ontophyletics of the nervous system: eyeless mutants illustrate how ontogenetic buffer mechanisms channel evolution. Proc Natl Acad Sci U S A. 1981 Jan;78(1):397–401. doi: 10.1073/pnas.78.1.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Katz M. J., Lasek R. J., Nauta H. J. Ontogeny of substrate pathways and the origin of the neural circuit pattern. Neuroscience. 1980;5(5):821–833. doi: 10.1016/0306-4522(80)90151-7. [DOI] [PubMed] [Google Scholar]
  31. Katz M. J., Lasek R. J. Substrate pathways demonstrated by transplanted Mauthner axons. J Comp Neurol. 1981 Feb 1;195(4):627–641. doi: 10.1002/cne.901950407. [DOI] [PubMed] [Google Scholar]
  32. Katz M. J., Lasek R. J. Substrate pathways which guide growing axons in Xenopus embryos. J Comp Neurol. 1979 Feb 15;183(4):817–831. doi: 10.1002/cne.901830409. [DOI] [PubMed] [Google Scholar]
  33. Keller G., Innocenti G. M. Callosal connections of suprasylvian visual areas in the cat. Neuroscience. 1981;6(4):703–712. doi: 10.1016/0306-4522(81)90154-8. [DOI] [PubMed] [Google Scholar]
  34. Kevetter G. A., Lasek R. J. Development of the marginal zone in the rhombenecephalon of Xenopus laevis. Brain Res. 1982 Jun;256(2):195–208. doi: 10.1016/0165-3806(82)90042-6. [DOI] [PubMed] [Google Scholar]
  35. Loeser J. D., Alvord E. C., Jr Agenesis of the corpus callosum. Brain. 1968 Sep;91(3):553–570. doi: 10.1093/brain/91.3.553. [DOI] [PubMed] [Google Scholar]
  36. Nieuwenhuys R. Comparative anatomy of olfactory centres and tracts. Prog Brain Res. 1967;23:1–64. doi: 10.1016/s0079-6123(08)60662-7. [DOI] [PubMed] [Google Scholar]
  37. Nieuwenhuys R. Topological analysis of the brain stem of the lamprey Lampetra fluviatilis. J Comp Neurol. 1972 Jun;145(2):165–177. doi: 10.1002/cne.901450204. [DOI] [PubMed] [Google Scholar]
  38. Nordlander R. H., Singer J. F., Beck R., Singer M. An ultrastructural examination of early ventral root formation in amphibia. J Comp Neurol. 1981 Jul 10;199(4):535–551. doi: 10.1002/cne.901990407. [DOI] [PubMed] [Google Scholar]
  39. Nordlander R. H., Singer M. Morphology and position of growth cones in the developing Xenopus spinal cord. Brain Res. 1982 Jun;256(2):181–193. doi: 10.1016/0165-3806(82)90041-4. [DOI] [PubMed] [Google Scholar]
  40. Nordlander R. H., Singer M. Spaces precede axons in Xenopus embryonic spinal cord. Exp Neurol. 1982 Jan;75(1):221–228. doi: 10.1016/0014-4886(82)90020-6. [DOI] [PubMed] [Google Scholar]
  41. Nornes H. O., Carry M. Neurogenesis in spinal cord of mouse: an autoradiographic analysis. Brain Res. 1978 Dec 22;159(1):1–6. doi: 10.1016/0006-8993(78)90105-1. [DOI] [PubMed] [Google Scholar]
  42. Nornes H. O., Hart H., Carry M. Pattern of development of ascending and descending fibers in embryonic spinal cord of chick: I. Role of position information. J Comp Neurol. 1980 Jul 1;192(1):119–132. doi: 10.1002/cne.901920108. [DOI] [PubMed] [Google Scholar]
  43. O'Leary D. D., Stanfield B. B., Cowan W. M. Evidence that the early postnatal restriction of the cells of origin of the callosal projection is due to the elimination of axonal collaterals rather than to the death of neurons. Brain Res. 1981 Jul;227(4):607–617. doi: 10.1016/0165-3806(81)90012-2. [DOI] [PubMed] [Google Scholar]
  44. Pandya D. N., Karol E. A., Lele P. P. The distribution of the anterior commissure in the squirrel monkey. Brain Res. 1973 Jan 15;49(1):177–180. doi: 10.1016/0006-8993(73)90409-5. [DOI] [PubMed] [Google Scholar]
  45. Paterson J. A., Privat A., Ling E. A., Leblond C. P. Investigation of glial cells in semithin sections. 3. Transformation of subependymal cells into glial cells, as shown by radioautography after 3 H-thymidine injection into the lateral ventricle of the brain of young rats. J Comp Neurol. 1973 May 1;149(1):83–102. doi: 10.1002/cne.901490106. [DOI] [PubMed] [Google Scholar]
  46. Rakic P., Yakovlev P. I. Development of the corpus callosum and cavum septi in man. J Comp Neurol. 1968 Jan;132(1):45–72. doi: 10.1002/cne.901320103. [DOI] [PubMed] [Google Scholar]
  47. Rhoades R. W., Dellacroce D. D. Neonatal enucleation induces an asymmetric pattern of visual callosal connections in hamsters. Brain Res. 1980 Nov 24;202(1):189–195. [PubMed] [Google Scholar]
  48. SCHOEN J. H. COMPARATIVE ASPECTS OF THE DESCENDING FIBRE SYSTEMS IN THE SPINAL CORD. Prog Brain Res. 1964;11:203–222. doi: 10.1016/s0079-6123(08)64049-2. [DOI] [PubMed] [Google Scholar]
  49. SLAGER U. T., KELLY A. B., WAGNER J. A. Congenital absence of the corpus callosum; report of a case and review of the literature. N Engl J Med. 1957 Jun 20;256(25):1171–1176. doi: 10.1056/NEJM195706202562502. [DOI] [PubMed] [Google Scholar]
  50. Scholes J. H. Nerve fibre topography in the retinal projection to the tectum. Nature. 1979 Apr 12;278(5705):620–624. doi: 10.1038/278620a0. [DOI] [PubMed] [Google Scholar]
  51. Silver J., Lorenz S. E., Wahlsten D., Coughlin J. Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways. J Comp Neurol. 1982 Sep 1;210(1):10–29. doi: 10.1002/cne.902100103. [DOI] [PubMed] [Google Scholar]
  52. Silver J., Ogawa M. Y. Postnatally induced formation of the corpus callosum in acallosal mice on glia-coated cellulose bridges. Science. 1983 Jun 3;220(4601):1067–1069. doi: 10.1126/science.6844928. [DOI] [PubMed] [Google Scholar]
  53. Silver J., Robb R. M. Studies on the development of the eye cup and optic nerve in normal mice and in mutants with congenital optic nerve aplasia. Dev Biol. 1979 Jan;68(1):175–190. doi: 10.1016/0012-1606(79)90252-5. [DOI] [PubMed] [Google Scholar]
  54. Silver J., Sapiro J. Axonal guidance during development of the optic nerve: the role of pigmented epithelia and other extrinsic factors. J Comp Neurol. 1981 Nov 10;202(4):521–538. doi: 10.1002/cne.902020406. [DOI] [PubMed] [Google Scholar]
  55. Silver J., Sidman R. L. A mechanism for the guidance and topographic patterning of retinal ganglion cell axons. J Comp Neurol. 1980 Jan 1;189(1):101–111. doi: 10.1002/cne.901890106. [DOI] [PubMed] [Google Scholar]
  56. Simpson S. B., Jr Morphology of the regenerated spinal cord in the lizard, Anolis carolinensis. J Comp Neurol. 1968 Oct;134(2):193–210. doi: 10.1002/cne.901340207. [DOI] [PubMed] [Google Scholar]
  57. Singer M., Nordlander R. H., Egar M. Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: the blueprint hypothesis of neuronal pathway patterning. J Comp Neurol. 1979 May 1;185(1):1–21. doi: 10.1002/cne.901850102. [DOI] [PubMed] [Google Scholar]
  58. Sturrock R. R. Light microscopic identification of immature glial cells in semithin sections of the developing mouse corpus callosum. J Anat. 1976 Dec;122(Pt 3):521–537. [PMC free article] [PubMed] [Google Scholar]
  59. Towe A. L. Rleative numbers of pyramidal tract neurons in mammals of different sizes. Brain Behav Evol. 1973;7(1):1–17. doi: 10.1159/000124395. [DOI] [PubMed] [Google Scholar]
  60. Valentino K. L., Jones E. G. The early formation of the corpus callosum: a light and electron microscopic study in foetal and neonatal rats. J Neurocytol. 1982 Aug;11(4):583–609. doi: 10.1007/BF01262426. [DOI] [PubMed] [Google Scholar]
  61. Wahlsten D. Deficiency of corpus callosum varies with strain and supplier of the mice. Brain Res. 1982 May 13;239(2):329–347. doi: 10.1016/0006-8993(82)90513-3. [DOI] [PubMed] [Google Scholar]
  62. Wahlsten D. Mode of inheritance of deficient corpus callosum in mice. J Hered. 1982 Jul-Aug;73(4):281–285. doi: 10.1093/oxfordjournals.jhered.a109640. [DOI] [PubMed] [Google Scholar]
  63. Watson C. R., Freeman B. W. The corticospinal tract in the kangaroo. Brain Behav Evol. 1977;14(5):341–351. doi: 10.1159/000125684. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES