Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jun 25;93(13):6320–6325. doi: 10.1073/pnas.93.13.6320

Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli.

R C Bugos 1, H Y Yamamoto 1
PMCID: PMC39020  PMID: 8692813

Abstract

Plants need to avoid or dissipate excess light energy to protect photosystem II (PSII) from photoinhibitory damage. Higher plants have a conserved system that dissipates excess energy as heat in the light-harvesting complexes of PSII that depends on the transthylakoid delta pH and violaxanthin de-epoxidase (VDE) activity. To our knowledge, we report the first cloning of a cDNA encoding VDE and expression of functional enzyme in Escherichia coli. VDE is nuclear encoded and has a transit peptide with characteristic features of other lumen-localized proteins. The cDNA encodes a putative polypeptide of 473 aa with a calculated molecular mass of 54,447 Da. Cleavage of the transit peptide results in a mature putative polypeptide of 348 aa with a calculated molecular mass of 39,929 Da, close to the apparent mass of the purified enzyme (43 kDa). The protein has three interesting domains including (i) a cysteine-rich region, (ii) a lipocalin signature, and (iii) a highly charged region. The E. coli expressed enzyme de-epoxidizes violaxanthin sequentially to antheraxanthin and zeaxanthin, and is inhibited by dithiothreitol, similar to VDE purified from chloroplasts. This confirms that the cDNA encodes an authentic VDE of a higher plant and is unequivocal evidence that the same enzyme catalyzes the two-step mono de-epoxidation reaction. The cloning of VDE opens new opportunities for examining the function and evolution of the xanthophyll cycle, and possibly enhancing light-stress tolerance of plants.

Full text

PDF
6320

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bugos R. C., Chiang V. L., Campbell W. H. cDNA cloning, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen. Plant Mol Biol. 1991 Dec;17(6):1203–1215. doi: 10.1007/BF00028736. [DOI] [PubMed] [Google Scholar]
  2. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  3. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clausmeyer S., Klösgen R. B., Herrmann R. G. Protein import into chloroplasts. The hydrophilic lumenal proteins exhibit unexpected import and sorting specificities in spite of structurally conserved transit peptides. J Biol Chem. 1993 Jul 5;268(19):13869–13876. [PubMed] [Google Scholar]
  5. Gilmore A. M., Hazlett T. L., Govindjee Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: formation of a quenching complex with a short fluorescence lifetime. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2273–2277. doi: 10.1073/pnas.92.6.2273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gilmore A. M., Yamamoto H. Y. Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1899–1903. doi: 10.1073/pnas.89.5.1899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hageman J., Baecke C., Ebskamp M., Pilon R., Smeekens S., Weisbeek P. Protein Import into and Sorting inside the Chloroplast Are Independent Processes. Plant Cell. 1990 May;2(5):479–494. doi: 10.1105/tpc.2.5.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Horton P., Ruban A. V., Walters R. G. Regulation of Light Harvesting in Green Plants (Indication by Nonphotochemical Quenching of Chlorophyll Fluorescence). Plant Physiol. 1994 Oct;106(2):415–420. doi: 10.1104/pp.106.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Keen J. N., Caceres I., Eliopoulos E. E., Zagalsky P. F., Findlay J. B. Complete sequence and model for the A2 subunit of the carotenoid pigment complex, crustacyanin. Eur J Biochem. 1991 Apr 23;197(2):407–417. doi: 10.1111/j.1432-1033.1991.tb15925.x. [DOI] [PubMed] [Google Scholar]
  10. Ko K., Cashmore A. R. Targeting of proteins to the thylakoid lumen by the bipartite transit peptide of the 33 kd oxygen-evolving protein. EMBO J. 1989 Nov;8(11):3187–3194. doi: 10.1002/j.1460-2075.1989.tb08477.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  12. Neubauer C., Yamamoto H. Y. Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts. Plant Physiol. 1992 Aug;99(4):1354–1361. doi: 10.1104/pp.99.4.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pervaiz S., Brew K. Homology and structure-function correlations between alpha 1-acid glycoprotein and serum retinol-binding protein and its relatives. FASEB J. 1987 Sep;1(3):209–214. doi: 10.1096/fasebj.1.3.3622999. [DOI] [PubMed] [Google Scholar]
  14. Rockholm D. C., Yamamoto H. Y. Violaxanthin de-epoxidase. Plant Physiol. 1996 Feb;110(2):697–703. doi: 10.1104/pp.110.2.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smith J. K., Schloss J. V., Mazur B. J. Functional expression of plant acetolactate synthase genes in Escherichia coli. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4179–4183. doi: 10.1073/pnas.86.11.4179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vorst O., Oosterhoff-Teertstra R., Vankan P., Smeekens S., Weisbeek P. Plastocyanin of Arabidopsis thaliana; isolation and characterization of the gene and chloroplast import of the precursor protein. Gene. 1988 May 15;65(1):59–69. doi: 10.1016/0378-1119(88)90417-9. [DOI] [PubMed] [Google Scholar]
  17. YAMAMOTO H. Y., NAKAYAMA T. O., CHICHESTER C. O. Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys. 1962 Apr;97:168–173. doi: 10.1016/0003-9861(62)90060-7. [DOI] [PubMed] [Google Scholar]
  18. Yamamoto H. Y., Higashi R. M. Violaxanthin de-epoxidase. Lipid composition and substrate specificity. Arch Biochem Biophys. 1978 Oct;190(2):514–522. doi: 10.1016/0003-9861(78)90305-3. [DOI] [PubMed] [Google Scholar]
  19. Yamamoto H. Y., Kamite L. The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region. Biochim Biophys Acta. 1972 Jun 23;267(3):538–543. doi: 10.1016/0005-2728(72)90182-x. [DOI] [PubMed] [Google Scholar]
  20. von Heijne G., Steppuhn J., Herrmann R. G. Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem. 1989 Apr 1;180(3):535–545. doi: 10.1111/j.1432-1033.1989.tb14679.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES