Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jun 25;93(13):6399–6404. doi: 10.1073/pnas.93.13.6399

31P NMR magnetization transfer study of the control of ATP turnover in Saccharomyces cerevisiae.

J G Sheldon 1, S P Williams 1, A M Fulton 1, K M Brindle 1
PMCID: PMC39034  PMID: 8692826

Abstract

31P NMR magnetization transfer measurements have been used to measure the steady state flux between Pi and ATP in yeast cells genetically modified to overexpress an adenine nucleotide translocase isoform. An increase in Pi -> ATP flux and apparent ratio of moles of ATP synthesized/atoms of oxygen consumed (P:O ratio), when these cells were incubated with glucose, demonstrated that the reactions catalyzed by the translocase and F1F0 ATP synthase were readily reversible in vivo. However, when the same cells were incubated with ethanol alone, translocase overexpression had no effect on the measured Pi -> ATP flux or apparent P:O ratio, suggesting that the synthase was now operating irreversibly. This change was accompanied by an increase in the intracellular ADP concentration. These observations are consistent with a model proposed for the kinetic control of mitochondrial ATP synthesis, which was based on isotope exchange measurements with isolated mammalian mitochondria [LaNoue, K. F., Jeffries, F. M. H. & Radda, G. K. (1986) Biochemistry 25, 7667-7675].

Full text

PDF
6399

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alger J. R., den Hollander J. A., Shulman R. G. In vivo phosphorus-31 nuclear magnetic resonance saturation transfer studies of adenosinetriphosphatase kinetics in Saccharomyces cerevisiae. Biochemistry. 1982 Jun 8;21(12):2957–2963. doi: 10.1021/bi00541a024. [DOI] [PubMed] [Google Scholar]
  2. Beauvoit B., Rigoulet M., Bunoust O., Raffard G., Canioni P., Guérin B. Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells. Eur J Biochem. 1993 May 15;214(1):163–172. doi: 10.1111/j.1432-1033.1993.tb17909.x. [DOI] [PubMed] [Google Scholar]
  3. Beauvoit B., Rigoulet M., Raffard G., Canioni P., Guérin B. Differential sensitivity of the cellular compartments of Saccharomyces cerevisiae to protonophoric uncoupler under fermentative and respiratory energy supply. Biochemistry. 1991 Nov 26;30(47):11212–11220. doi: 10.1021/bi00111a004. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Brand M. D., Chien L. F., Rolfe D. F. Control of oxidative phosphorylation in liver mitochondria and hepatocytes. Biochem Soc Trans. 1993 Aug;21(3):757–762. doi: 10.1042/bst0210757. [DOI] [PubMed] [Google Scholar]
  6. Brand M. D., Harper M. E., Taylor H. C. Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes. Biochem J. 1993 May 1;291(Pt 3):739–748. doi: 10.1042/bj2910739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brindle K. M. 31P NMR magnetization-transfer measurements of flux between inorganic phosphate and adenosine 5'-triphosphate in yeast cells genetically modified to overproduce phosphoglycerate kinase. Biochemistry. 1988 Aug 9;27(16):6187–6196. doi: 10.1021/bi00416a054. [DOI] [PubMed] [Google Scholar]
  8. Brindle K. M., Radda G. K. 31P-NMR saturation transfer measurements of exchange between Pi and ATP in the reactions catalysed by glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase in vitro. Biochim Biophys Acta. 1987 Apr 2;928(1):45–55. doi: 10.1016/0167-4889(87)90084-x. [DOI] [PubMed] [Google Scholar]
  9. Brindle K. M., Radda G. K. Measurements of exchange in the reaction catalysed by creatine kinase using 14C and 15N isotope labels and the NMR technique of saturation transfer. Biochim Biophys Acta. 1985 Jun 10;829(2):188–201. doi: 10.1016/0167-4838(85)90188-8. [DOI] [PubMed] [Google Scholar]
  10. Brindle K., Braddock P., Fulton S. 31P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase. Biochemistry. 1990 Apr 3;29(13):3295–3302. doi: 10.1021/bi00465a021. [DOI] [PubMed] [Google Scholar]
  11. Brown G. C., Brand M. D. Changes in permeability to protons and other cations at high proton motive force in rat liver mitochondria. Biochem J. 1986 Feb 15;234(1):75–81. doi: 10.1042/bj2340075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Brown T. R., Ugurbil K., Shulman R. G. 31P nuclear magnetic resonance measurements of ATPase kinetics in aerobic Escherichia coli cells. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5551–5553. doi: 10.1073/pnas.74.12.5551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Campbell-Burk S. L., Jones K. A., Shulman R. G. 31P NMR saturation-transfer measurements in Saccharomyces cerevisiae: characterization of phosphate exchange reactions by iodoacetate and antimycin A inhibition. Biochemistry. 1987 Nov 17;26(23):7483–7492. doi: 10.1021/bi00397a043. [DOI] [PubMed] [Google Scholar]
  14. Campbell S. L., Jones K. A., Shulman R. G. In vivo 31P nuclear magnetic resonance saturation transfer measurements of phosphate exchange reactions in the yeast Saccharomyces cerevisiae. FEBS Lett. 1985 Dec 2;193(2):189–193. doi: 10.1016/0014-5793(85)80148-4. [DOI] [PubMed] [Google Scholar]
  15. Davies S. E., Brindle K. M. Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae. Biochemistry. 1992 May 19;31(19):4729–4735. doi: 10.1021/bi00134a028. [DOI] [PubMed] [Google Scholar]
  16. Fitton V., Rigoulet M., Ouhabi R., Guérin B. Mechanistic stoichiometry of yeast mitochondrial oxidative phosphorylation. Biochemistry. 1994 Aug 16;33(32):9692–9698. doi: 10.1021/bi00198a039. [DOI] [PubMed] [Google Scholar]
  17. Gawaz M., Douglas M. G., Klingenberg M. Structure-function studies of adenine nucleotide transport in mitochondria. II. Biochemical analysis of distinct AAC1 and AAC2 proteins in yeast. J Biol Chem. 1990 Aug 25;265(24):14202–14208. [PubMed] [Google Scholar]
  18. Guérin B., Labbe P., Somlo M. Preparation of yeast mitochondria (Saccharomyces cerevisiae) with good P/O and respiratory control ratios. Methods Enzymol. 1979;55:149–159. doi: 10.1016/0076-6879(79)55021-6. [DOI] [PubMed] [Google Scholar]
  19. Harper M. E., Brand M. D. The quantitative contributions of mitochondrial proton leak and ATP turnover reactions to the changed respiration rates of hepatocytes from rats of different thyroid status. J Biol Chem. 1993 Jul 15;268(20):14850–14860. [PubMed] [Google Scholar]
  20. Hinnen A., Hicks J. B., Fink G. R. Transformation of yeast. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1929–1933. doi: 10.1073/pnas.75.4.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kingsley-Hickman P. B., Sako E. Y., Mohanakrishnan P., Robitaille P. M., From A. H., Foker J. E., Uğurbil K. 31P NMR studies of ATP synthesis and hydrolysis kinetics in the intact myocardium. Biochemistry. 1987 Nov 17;26(23):7501–7510. doi: 10.1021/bi00397a045. [DOI] [PubMed] [Google Scholar]
  22. Kingsley-Hickman P., Sako E. Y., Andreone P. A., St Cyr J. A., Michurski S., Foker J. E., From A. H., Petein M., Ugurbil K. 31P NMR measurement of ATP synthesis rate in perfused intact rat hearts. FEBS Lett. 1986 Mar 17;198(1):159–163. doi: 10.1016/0014-5793(86)81204-2. [DOI] [PubMed] [Google Scholar]
  23. Kupriyanov V. V., Balaban R. S., Lyulina N. V., Steinschneider AYa, Saks V. A. Combination of 31P-NMR magnetization transfer and radioisotope exchange methods for assessment of an enzyme reaction mechanism: rate-determining steps of the creatine kinase reaction. Biochim Biophys Acta. 1990 Dec 6;1020(3):290–304. doi: 10.1016/0005-2728(90)90160-6. [DOI] [PubMed] [Google Scholar]
  24. LaNoue K. F., Jeffries F. M., Radda G. K. Kinetic control of mitochondrial ATP synthesis. Biochemistry. 1986 Nov 18;25(23):7667–7675. doi: 10.1021/bi00371a058. [DOI] [PubMed] [Google Scholar]
  25. Mackler B., Haynes B. Studies of oxidation phosphorylation in Saccharomyces cerevisiae and Saccharomyces carlsbergensis. Biochim Biophys Acta. 1973 Jan 18;292(1):88–91. doi: 10.1016/0005-2728(73)90253-3. [DOI] [PubMed] [Google Scholar]
  26. Matthews P. M., Bland J. L., Gadian D. G., Radda G. K. The steady-state rate of ATP synthesis in the perfused rat heart measured by 31P NMR saturation transfer. Biochem Biophys Res Commun. 1981 Dec 15;103(3):1052–1059. doi: 10.1016/0006-291x(81)90915-3. [DOI] [PubMed] [Google Scholar]
  27. Mitsumori F., Rees D., Brindle K. M., Radda G. K., Campbell I. D. 31P-NMR saturation transfer studies of aerobic Escherichia coli cells. Biochim Biophys Acta. 1988 Apr 25;969(2):185–193. doi: 10.1016/0167-4889(88)90074-2. [DOI] [PubMed] [Google Scholar]
  28. O'Malley K., Pratt P., Robertson J., Lilly M., Douglas M. G. Selection of the nuclear gene for the mitochondrial adenine nucleotide translocator by genetic complementation of the op1 mutation in yeast. J Biol Chem. 1982 Feb 25;257(4):2097–2103. [PubMed] [Google Scholar]
  29. Ogden J. E., Stanway C., Kim S., Mellor J., Kingsman A. J., Kingsman S. M. Efficient expression of the Saccharomyces cerevisiae PGK gene depends on an upstream activation sequence but does not require TATA sequences. Mol Cell Biol. 1986 Dec;6(12):4335–4343. doi: 10.1128/mcb.6.12.4335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Piper P. W., Curran B. P. When a glycolytic gene on a yeast 2 mu ORI-STB plasmid is made essential for growth its expression level is a major determinant of plasmid copy number. Curr Genet. 1990 Feb;17(2):119–123. doi: 10.1007/BF00312855. [DOI] [PubMed] [Google Scholar]
  31. Sako E. Y., Kingsley-Hickman P. B., From A. H., Foker J. E., Ugurbil K. ATP synthesis kinetics and mitochondrial function in the postischemic myocardium as studied by 31P NMR. J Biol Chem. 1988 Aug 5;263(22):10600–10607. [PubMed] [Google Scholar]
  32. Shoubridge E. A., Briggs R. W., Radda G. K. 31p NMR saturation transfer measurements of the steady state rates of creatine kinase and ATP synthetase in the rat brain. FEBS Lett. 1982 Apr 19;140(2):289–292. doi: 10.1016/0014-5793(82)80916-2. [DOI] [PubMed] [Google Scholar]
  33. Tempest D. W., Neijssel O. M. The status of YATP and maintenance energy as biologically interpretable phenomena. Annu Rev Microbiol. 1984;38:459–486. doi: 10.1146/annurev.mi.38.100184.002331. [DOI] [PubMed] [Google Scholar]
  34. Verduyn C., Stouthamer A. H., Scheffers W. A., van Dijken J. P. A theoretical evaluation of growth yields of yeasts. Antonie Van Leeuwenhoek. 1991 Jan;59(1):49–63. doi: 10.1007/BF00582119. [DOI] [PubMed] [Google Scholar]
  35. den Hollander J. A., Ugurbil K., Brown T. R., Bednar M., Redfield C., Shulman R. G. Studies of anaerobic and aerobic glycolysis in Saccharomyces cerevisiae. Biochemistry. 1986 Jan 14;25(1):203–211. doi: 10.1021/bi00349a029. [DOI] [PubMed] [Google Scholar]
  36. den Hollander J. A., Ugurbil K., Brown T. R., Shulman R. G. Phosphorus-31 nuclear magnetic resonance studies of the effect of oxygen upon glycolysis in yeast. Biochemistry. 1981 Sep 29;20(20):5871–5880. doi: 10.1021/bi00523a034. [DOI] [PubMed] [Google Scholar]
  37. den Hollander J. A., Ugurbil K., Shulman R. G. 31P and 13C NMR studies of intermediates of aerobic and anaerobic glycolysis in Saccharomyces cerevisiae. Biochemistry. 1986 Jan 14;25(1):212–219. doi: 10.1021/bi00349a030. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES