Abstract
Ribozymes are polynucleotide molecules with intrinsic catalytic activity, capable of cleaving nucleic acid substrates. Large RNA molecules were synthesized containing a hammerhead ribozyme moiety of 52 nucleotides linked to an inactive leader sequence, for total lengths of either 262 or 1226 nucleotides. Frozen RNAs were irradiated with high energy electrons. Surviving ribozyme activity was determined using the ability of the irradiated ribozymes to cleave a labeled substrate. The amount of intact RNA remaining was determined from the same irradiated samples by scanning the RNA band following denaturing gel electrophoresis. Radiation target analyses of these data revealed a structural target size of 80 kDa and a ribozyme activity target size of 15 kDa for the smaller ribozyme, and 319 kDa and 16 kDa, respectively, for the larger ribozyme. The disparity in target size for activity versus structure indicates that, in contrast to proteins, there is no spread of radiation damage far from the primary site of ionization in RNA molecules. The smaller target size for activity indicates that only primary ionizations occurring in the specific active region are effective. This is similar to the case for oligosaccharides. We concluded that the presence of the ribose sugar in the polymer chain restricts radiation damage to a small region and prevents major energy transfer throughout the molecule. Radiation target analysis should be a useful technique for evaluating local RNA:RNA and RNA:protein interactions in vitro.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Diener T. O. Circular RNAs: relics of precellular evolution? Proc Natl Acad Sci U S A. 1989 Dec;86(23):9370–9374. doi: 10.1073/pnas.86.23.9370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fedor M. J., Uhlenbeck O. C. Kinetics of intermolecular cleavage by hammerhead ribozymes. Biochemistry. 1992 Dec 8;31(48):12042–12054. doi: 10.1021/bi00163a012. [DOI] [PubMed] [Google Scholar]
- Goodchild J., Kohli V. Ribozymes that cleave an RNA sequence from human immunodeficiency virus: the effect of flanking sequence on rate. Arch Biochem Biophys. 1991 Feb 1;284(2):386–391. doi: 10.1016/0003-9861(91)90313-8. [DOI] [PubMed] [Google Scholar]
- Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 1983 Dec;35(3 Pt 2):849–857. doi: 10.1016/0092-8674(83)90117-4. [DOI] [PubMed] [Google Scholar]
- Harmon J. T., Nielsen T. B., Kempner E. S. Molecular weight determinations from radiation inactivation. Methods Enzymol. 1985;117:65–94. doi: 10.1016/s0076-6879(85)17008-4. [DOI] [PubMed] [Google Scholar]
- Joyce G. F. RNA evolution and the origins of life. Nature. 1989 Mar 16;338(6212):217–224. doi: 10.1038/338217a0. [DOI] [PubMed] [Google Scholar]
- KEMPNER E. S., POLLARD E. C. Radiation inhibition of amino acid uptake by Escherichia coli. Biophys J. 1961 Mar;1:265–277. doi: 10.1016/s0006-3495(61)86888-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kempner E. S., Cole K. W., Gaertner F. H. The functional unit of the arom conjugate in Neurospora. J Biol Chem. 1982 Aug 10;257(15):8919–8921. [PubMed] [Google Scholar]
- Kempner E. S. Damage to proteins due to the direct action of ionizing radiation. Q Rev Biophys. 1993 Feb;26(1):27–48. doi: 10.1017/s0033583500003954. [DOI] [PubMed] [Google Scholar]
- Kempner E. S., Miller J. H. Effect of environmental conditions on radiation target size analyses. Anal Biochem. 1994 Feb 1;216(2):451–455. doi: 10.1006/abio.1994.1067. [DOI] [PubMed] [Google Scholar]
- Kempner E. S., Miller J. H., McCreery M. J. Radiation target analysis of glycoproteins. Anal Biochem. 1986 Jul;156(1):140–146. doi: 10.1016/0003-2697(86)90165-x. [DOI] [PubMed] [Google Scholar]
- Kruger K., Grabowski P. J., Zaug A. J., Sands J., Gottschling D. E., Cech T. R. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell. 1982 Nov;31(1):147–157. doi: 10.1016/0092-8674(82)90414-7. [DOI] [PubMed] [Google Scholar]
- L'Huillier P. J., Davis S. R., Bellamy A. R. Cytoplasmic delivery of ribozymes leads to efficient reduction in alpha-lactalbumin mRNA levels in C127I mouse cells. EMBO J. 1992 Dec;11(12):4411–4418. doi: 10.1002/j.1460-2075.1992.tb05541.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orgel L. E. Evolution of the genetic apparatus. J Mol Biol. 1968 Dec;38(3):381–393. doi: 10.1016/0022-2836(68)90393-8. [DOI] [PubMed] [Google Scholar]
- Uhlenbeck O. C. A small catalytic oligoribonucleotide. Nature. 1987 Aug 13;328(6131):596–600. doi: 10.1038/328596a0. [DOI] [PubMed] [Google Scholar]
- Vellanoweth R. L., Suprakar P. C., Roy A. K. Transcription factors in development, growth, and aging. Lab Invest. 1994 Jun;70(6):784–799. [PubMed] [Google Scholar]
- WOHLHIETER J. A., BUZZELL A., LAUFFER M. A. Effect of x-rays on nucleic acid isolated from tobacco mosaic virus. Biochim Biophys Acta. 1960 Sep 23;43:163–172. doi: 10.1016/0006-3002(60)90426-1. [DOI] [PubMed] [Google Scholar]