Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Jul;82(14):4578–4581. doi: 10.1073/pnas.82.14.4578

Inactivation of S-adenosyl-L-homocysteine hydrolase by cAMP results from dissociation of enzyme-bound NAD+.

R J Hohman, M C Guitton, M Veron
PMCID: PMC390428  PMID: 2991881

Abstract

S-Adenosyl-L-homocysteine hydrolase (EC 3.3.1.1) is inactivated by cAMP and also by 2'-deoxyadenosine, and in both cases, activity is restored by incubating the inactivated enzyme with NAD+. We have previously presented evidence that, despite these similarities, inactivation by these two ligands proceeds by different mechanisms. We have now used a fluorescence technique to quantitate enzyme-bound NAD+ and NADH on S-adenosyl-L-homocysteine hydrolase from Dictyostelium discoideum, and we have confirmed that cAMP and 2'-deoxyadenosine inactivate by different mechanisms. Whereas inactivation by 2'-deoxyadenosine is due to reduction of the enzyme-bound NAD+ to NADH, incubation of S-adenosyl-L-homocysteine hydrolase with cAMP results in dissociation of the enzyme-bound NAD+. The dissociation is reversible, and reactivation likely occurs by restoration of the initial NAD+ content. This reversible inactivation by cAMP may be a mechanism of controlling biological methylation reactions by adjusting intracellular concentrations of S-adenosyl-L-homocysteine through action of S-adenosyl-L-homocysteine hydrolase.

Full text

PDF
4578

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeles R. H., Fish S., Lapinskas B. S-Adenosylhomocysteinase: mechanism of inactivation by 2'-deoxyadenosine and interaction with other nucleosides. Biochemistry. 1982 Oct 26;21(22):5557–5562. doi: 10.1021/bi00265a027. [DOI] [PubMed] [Google Scholar]
  2. Chiang P. K., Guranowski A., Segall J. E. Irreversible inhibition of S-adenosylhomocysteine hydrolase by nucleoside analogs. Arch Biochem Biophys. 1981 Mar;207(1):175–184. doi: 10.1016/0003-9861(81)90023-0. [DOI] [PubMed] [Google Scholar]
  3. DE LA HABA G., CANTONI G. L. The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine. J Biol Chem. 1959 Mar;234(3):603–608. [PubMed] [Google Scholar]
  4. Hershfield M. S. Apparent suicide inactivation of human lymphoblast S-adenosylhomocysteine hydrolase by 2'-deoxyadenosine and adenine arabinoside. A basis for direct toxic effects of analogs of adenosine. J Biol Chem. 1979 Jan 10;254(1):22–25. [PubMed] [Google Scholar]
  5. Hershfield M. S., Krodich N. M. S-adenosylhomocysteine hydrolase is an adenosine-binding protein: a target for adenosine toxicity. Science. 1978 Nov 17;202(4369):757–760. doi: 10.1126/science.715439. [DOI] [PubMed] [Google Scholar]
  6. Hohman R. J., Guitton M. C., Véron M. Purification of S-adenosyl-L-homocysteine hydrolase from Dictyostelium discoideum: reversible inactivation by cAMP and 2'-deoxyadenosine. Arch Biochem Biophys. 1984 Sep;233(2):785–795. doi: 10.1016/0003-9861(84)90507-1. [DOI] [PubMed] [Google Scholar]
  7. Hohman R. J., Veron M. S-adenosyl-L-homocysteine hydrolase from Dictyostelium discoideum is inactivated by cAMP and reactivated by NAD+. FEBS Lett. 1984 Jan 9;165(2):265–268. doi: 10.1016/0014-5793(84)80182-9. [DOI] [PubMed] [Google Scholar]
  8. Kay R. R. cAMP and spore differentiation in Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1982 May;79(10):3228–3231. doi: 10.1073/pnas.79.10.3228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kredich N. M., Hershfield M. S. Perturbations in S-adenosylhomocysteine and S-adenosylmethionine metabolism: effects on transmethylation. Adv Enzyme Regul. 1980;18:181–191. doi: 10.1016/0065-2571(80)90015-1. [DOI] [PubMed] [Google Scholar]
  10. Mangiarotti G., Ceccarelli A., Lodish H. F. Cyclic AMP stabilizes a class of developmentally regulated Dictyostelium discoideum mRNAs. Nature. 1983 Feb 17;301(5901):616–618. doi: 10.1038/301616a0. [DOI] [PubMed] [Google Scholar]
  11. Mehdy M. C., Ratner D., Firtel R. A. Induction and modulation of cell-type-specific gene expression in Dictyostelium. Cell. 1983 Mar;32(3):763–771. doi: 10.1016/0092-8674(83)90062-4. [DOI] [PubMed] [Google Scholar]
  12. Palmer J. L., Abeles R. H. The mechanism of action of S-adenosylhomocysteinase. J Biol Chem. 1979 Feb 25;254(4):1217–1226. [PubMed] [Google Scholar]
  13. Pugh C. S., Borchardt R. T. Effects of S-adenosylhomocysteine analogues on vaccinia viral messenger ribonucleic acid synthesis and methylation. Biochemistry. 1982 Mar 30;21(7):1535–1541. doi: 10.1021/bi00536a011. [DOI] [PubMed] [Google Scholar]
  14. Saebø J., Ueland P. M. An adenosine 3':5'-monophosphate adenosine-binding protein from mouse liver. Association with S-adenosylhomocysteinase activity. FEBS Lett. 1978 Dec 1;96(1):125–128. doi: 10.1016/0014-5793(78)81076-x. [DOI] [PubMed] [Google Scholar]
  15. Schramm M., Selinger Z. Message transmission: receptor controlled adenylate cyclase system. Science. 1984 Sep 21;225(4668):1350–1356. doi: 10.1126/science.6147897. [DOI] [PubMed] [Google Scholar]
  16. Williams J. G., Tsang A. S., Mahbubani H. A change in the rate of transcription of a eukaryotic gene in response to cyclic AMP. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7171–7175. doi: 10.1073/pnas.77.12.7171. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES