Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Aug;82(15):4871–4875. doi: 10.1073/pnas.82.15.4871

Preparations of homeostatic thymus hormone consist predominantly of histones 2A and 2B and suggest additional histone functions.

R Reichhart, M Zeppezauer, H Jörnvall
PMCID: PMC390459  PMID: 3860828

Abstract

The two major constituents in preparations of the homeostatic thymus hormone (HTH) were purified. Amino acid sequence analysis showed that the components (HTH alpha and HTH beta) are identical to histones H2A and H2B, suggesting the possibility that histones might have hitherto unrecognized occurrence and functions. If the HTH activities are not ascribed to the two histones in the preparation, they could only be derived from minor constituents present in minimal amounts. Therefore, the histone structures were scrutinized for properties of relevance in relation to hormone activities and for similarities with thymic hormones. Similarities between COOH-terminal regions of histones H2A, H2B, and H3 were noticed, as well as some similarities between NH2-terminal regions of histones and parts of recognized thymus hormones and related proteins. Potential signals, resembling cleavage sites in prohormones, are present in the histone structures, and further correlations with recently discovered ubiquitin functions may explain molecular mechanisms for actions of the HTH preparations. None of the observations is significant by itself, but the combined results suggest the hypothesis of different relationships and functions, including hormone-like activities, for some histones.

Full text

PDF
4871

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Audhya T., Schlesinger D. H., Goldstein G. Complete amino acid sequences of bovine thymopoietins I, II, and III: closely homologous polypeptides. Biochemistry. 1981 Oct 13;20(21):6195–6200. doi: 10.1021/bi00524a044. [DOI] [PubMed] [Google Scholar]
  2. BEZSSONOFF N. A., COMSA J. Préparation d'un extrait purifié de thymus, application à l'urine humaine. Ann Endocrinol (Paris) 1958 Mar-Apr;19(2):222–227. [PubMed] [Google Scholar]
  3. Ball D. J., Slaughter C. A., Hensley P., Garrard W. T. Amino acid sequence of the N-terminal domain of calf thymus histone H2A.Z. FEBS Lett. 1983 Apr 5;154(1):166–170. doi: 10.1016/0014-5793(83)80896-5. [DOI] [PubMed] [Google Scholar]
  4. Bernardi G., Comsa J. Purification chromatographique d'une préparation de thymus douée d'activité hormonale. Experientia. 1965 Jul 15;21(7):416–417. doi: 10.1007/BF02139779. [DOI] [PubMed] [Google Scholar]
  5. Burton P., Iden S., Mitchell K., White A. Thymic hormone-like restoration by human prealbumin of azathioprine sensitivity of spleen cells from thymectomized mice. Proc Natl Acad Sci U S A. 1978 Feb;75(2):823–827. doi: 10.1073/pnas.75.2.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Busch H., Ballal N. R., Busch R. K., Choi Y. C., Davis F., Goldknopf I. L., Matsui S. I., Rao M. S., Rothblum L. I. The nucleolus, a model for analysis of chromatin controls. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 2):665–683. doi: 10.1101/sqb.1978.042.01.069. [DOI] [PubMed] [Google Scholar]
  7. Böhm L., Briand G., Sautière P., Crane-Robinson C. Proteolytic digestion studies of chromatin core-histone structure. Identification of limit peptides from histone H2B. Eur J Biochem. 1982 Apr 1;123(2):299–303. doi: 10.1111/j.1432-1033.1982.tb19767.x. [DOI] [PubMed] [Google Scholar]
  8. Böhm L., Crane-Robinson C., Sautière P. Proteolytic digestion studies of chromatin core-histone structure. Identification of a limit peptide of histone H2A. Eur J Biochem. 1980 May;106(2):525–530. doi: 10.1111/j.1432-1033.1980.tb04599.x. [DOI] [PubMed] [Google Scholar]
  9. COMSA J. ACTION OF THE PURIFIED THYMUS HORMONE IN THYMECTOMIZED GUINEA PIGS. Am J Med Sci. 1965 Jul;250:79–85. doi: 10.1097/00000441-196507000-00013. [DOI] [PubMed] [Google Scholar]
  10. Caldarella J., Goodall G. J., Felix A. M., Heimer E. P., Salvin S. B., Horecker B. L. Thymosin alpha 11: a peptide related to thymosin alpha 1 isolated from calf thymosin fraction 5. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7424–7427. doi: 10.1073/pnas.80.24.7424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Comsa J., Baumann B., Zeppezauer M., Leonhardt H., Weber N. Influence de l'hormone thymique sur la radioleucose de la souris. C R Seances Acad Sci D. 1979 Jan 8;288(1):185–187. [PubMed] [Google Scholar]
  12. Comsa J., Leonhardt H., Wekerle H. Hormonal coordination of the immune response. Rev Physiol Biochem Pharmacol. 1982;92:115–191. doi: 10.1007/BFb0030504. [DOI] [PubMed] [Google Scholar]
  13. DeLange R. J., Hooper J. A., Smith E. L. Complete amino-acid sequence of calf-thymus histone 3. Proc Natl Acad Sci U S A. 1972 Apr;69(4):882–884. doi: 10.1073/pnas.69.4.882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eickbush T. H., Watson D. K., Moudrianakis E. N. A chromatin-bound proteolytic activity with unique specificity for histone H2A. Cell. 1976 Dec;9(4 Pt 2):785–792. doi: 10.1016/0092-8674(76)90141-0. [DOI] [PubMed] [Google Scholar]
  15. Grove G. W., Zweidler A. Regulation of nucleosomal core histone variant levels in differentiating murine erythroleukemia cells. Biochemistry. 1984 Sep 11;23(19):4436–4443. doi: 10.1021/bi00314a030. [DOI] [PubMed] [Google Scholar]
  16. Hahn G. S., Hamburger R. N. Evolutionary relationship of thymopoietin to immunoglobulins and cellular recognition molecules. J Immunol. 1981 Feb;126(2):459–462. [PubMed] [Google Scholar]
  17. Hannappel E., Davoust S., Horecker B. L. Thymosins beta 8 and beta 9: two new peptides isolated from calf thymus homologous to thymosin beta 4. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1708–1711. doi: 10.1073/pnas.79.6.1708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hannestad K., Stollar B. D. Certain rheumatoid factors react with nucleosomes. Nature. 1978 Oct 19;275(5681):671–673. doi: 10.1038/275671a0. [DOI] [PubMed] [Google Scholar]
  19. Haritos A. A., Goodall G. J., Horecker B. L. Prothymosin alpha: isolation and properties of the major immunoreactive form of thymosin alpha 1 in rat thymus. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1008–1011. doi: 10.1073/pnas.81.4.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hershko A. Ubiquitin: roles in protein modification and breakdown. Cell. 1983 Aug;34(1):11–12. doi: 10.1016/0092-8674(83)90131-9. [DOI] [PubMed] [Google Scholar]
  21. Isenberg I. Histones. Annu Rev Biochem. 1979;48:159–191. doi: 10.1146/annurev.bi.48.070179.001111. [DOI] [PubMed] [Google Scholar]
  22. Jordano J., Montero F., Palacián E. Rearrangement of nucleosomal components by modification of histone amino groups. Structural role of lysine residues. Biochemistry. 1984 Sep 11;23(19):4280–4284. doi: 10.1021/bi00314a004. [DOI] [PubMed] [Google Scholar]
  23. Jörnvall H., Carlström A., Pettersson T., Jacobsson B., Persson M., Mutt V. Structural homologies between prealbumin, gastrointestinal prohormones and other proteins. Nature. 1981 May 21;291(5812):261–263. doi: 10.1038/291261a0. [DOI] [PubMed] [Google Scholar]
  24. Jörnvall H., Mutt V., Persson M. Structural similarities among gastrointestinal hormones and related active peptides. Hoppe Seylers Z Physiol Chem. 1982 May;363(5):475–483. doi: 10.1515/bchm2.1982.363.1.475. [DOI] [PubMed] [Google Scholar]
  25. Jörnvall H., Persson B. Amino acid sequence restriction in relation to proteolysis. Biosci Rep. 1983 Mar;3(3):225–232. doi: 10.1007/BF01122454. [DOI] [PubMed] [Google Scholar]
  26. Kanda Y., Goodman D. S., Canfield R. E., Morgan F. J. The amino acid sequence of human plasma prealbumin. J Biol Chem. 1974 Nov 10;249(21):6796–6805. [PubMed] [Google Scholar]
  27. Low T. L., Goldstein A. L. The chemistry and biology of thymosin. II. Amino acid sequence analysis of thymosin alpha1 and polypeptide beta1. J Biol Chem. 1979 Feb 10;254(3):987–995. [PubMed] [Google Scholar]
  28. Low T. L., Hu S. K., Goldstein A. L. Complete amino acid sequence of bovine thymosin beta 4: a thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1162–1166. doi: 10.1073/pnas.78.2.1162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moss T., Cary P. D., Abercrombie B. D., Crane-Robinson C., Bradbury E. M. A pH-dependent interaction between histones H2A and H2B involving secondary and tertiary folding. Eur J Biochem. 1976 Dec 11;71(2):337–350. doi: 10.1111/j.1432-1033.1976.tb11120.x. [DOI] [PubMed] [Google Scholar]
  30. Olson M. O., Jordan J., Busch H. The amino terminal sequence of calf thymus histone 3. Biochem Biophys Res Commun. 1972 Jan 14;46(1):50–55. doi: 10.1016/0006-291x(72)90628-6. [DOI] [PubMed] [Google Scholar]
  31. Pleau J. M., Dardenne M., Blouquit Y., Bach J. F. Structural study of circulating thymic factor: a peptide isolated from pig serum. II. Amino acid sequence. J Biol Chem. 1977 Nov 25;252(22):8045–8047. [PubMed] [Google Scholar]
  32. Pradayrol L., Jörnvall H., Mutt V., Ribet A. N-terminally extended somatostatin: the primary structure of somatostatin-28. FEBS Lett. 1980 Jan 1;109(1):55–58. doi: 10.1016/0014-5793(80)81310-x. [DOI] [PubMed] [Google Scholar]
  33. Rekvig O. P., Hannestad K. Human autoantibodies that react with both cell nuclei and plasma membranes display specificity for the octamer of histones H2A, H2B, H3, and H4 in high salt. J Exp Med. 1980 Dec 1;152(6):1720–1733. doi: 10.1084/jem.152.6.1720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rill R. L., Oosterhof D. K. The accessibilities of histones in nucleosome cores to an arginine-specific protease. J Biol Chem. 1982 Dec 25;257(24):14875–14880. [PubMed] [Google Scholar]
  35. Robey G., Campbell B. J., Luckey T. D. Isolation and characterization of a thymic factor. Infect Immun. 1972 Nov;6(5):682–688. doi: 10.1128/iai.6.5.682-688.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schlesinger D. H., Goldstein G., Niall H. D. The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells. Biochemistry. 1975 May 20;14(10):2214–2218. doi: 10.1021/bi00681a026. [DOI] [PubMed] [Google Scholar]
  37. West M. H., Bonner W. M. Histone 2B can be modified by the attachment of ubiquitin. Nucleic Acids Res. 1980 Oct 24;8(20):4671–4680. doi: 10.1093/nar/8.20.4671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Williams A. F. The immunoglobulin superfamily takes shape. Nature. 1984 Mar 1;308(5954):12–13. doi: 10.1038/308012a0. [DOI] [PubMed] [Google Scholar]
  39. Yeaman S. J., Cohen P., Watson D. C., Dixon G. H. The substrate specificity of adenosine 3':5'-cyclic monophosphate-dependent protein kinase of rabbit skeletal muscle. Biochem J. 1977 Feb 15;162(2):411–421. doi: 10.1042/bj1620411. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES