Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Aug;82(15):5208–5212. doi: 10.1073/pnas.82.15.5208

Brain and muscle nicotinic acetylcholine receptors are different but homologous proteins.

B M Conti-Tronconi, S M Dunn, E A Barnard, J O Dolly, F A Lai, N Ray, M A Raftery
PMCID: PMC390529  PMID: 3860855

Abstract

An alpha-bungarotoxin-binding protein was purified from chick optic lobe and brain by an improved method. Previous and present observations justify its designation as a brain nicotinic acetylcholine receptor (AcChoR). It contains subunits whose apparent molecular weights are somewhat larger than those of subunits of peripheral AcChoRs. The size of the optic lobe AcChoR complex is greater than that of the peripheral receptor when estimated from its sedimentation behavior. Brain AcChoR subunits can be specifically precipitated by a monoclonal antibody directed against chick muscle AcChoR. Amino-terminal amino acid sequence analysis was performed on AcChoR preparations and isolated subunits from the optic lobe and from the rest of the chick brain. The sequences obtained demonstrate that, at least for the lowest molecular weight component, the AcChoRs from different brain areas are identical and they are highly homologous to muscle AcChoR. It is concluded that the brain alpha-bungarotoxin-binding protein is indeed a nicotinic AcChoR and is encoded by a set of genes that is different from, but strongly related to, that for the muscle AcChoR.

Full text

PDF
5208

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnard E. A., Beeson D., Bilbe G., Brown D. A., Constanti A., Conti-Tronconi B. M., Dolly J. O., Dunn S. M., Mehraban F., Richards B. M. Acetylcholine and GABA receptors: subunits of central and peripheral receptors and their encoding nucleic acids. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 1):109–124. doi: 10.1101/sqb.1983.048.01.014. [DOI] [PubMed] [Google Scholar]
  2. Betz H., Pfeiffer F. Monoclonal antibodies against the alpha-bungarotoxin-binding protein of chick optic lobe. J Neurosci. 1984 Aug;4(8):2095–2105. doi: 10.1523/JNEUROSCI.04-08-02095.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Claudio T., Ballivet M., Patrick J., Heinemann S. Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor gamma subunit. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1111–1115. doi: 10.1073/pnas.80.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Conti-Tronconi B. M., Dunn S. M., Raftery M. A. Independent sites of low and high affinity for agonists on Torpedo californica acetylcholine receptor. Biochem Biophys Res Commun. 1982 Jul 16;107(1):123–129. doi: 10.1016/0006-291x(82)91678-3. [DOI] [PubMed] [Google Scholar]
  5. Conti-Tronconi B. M., Gotti C. M., Hunkapiller M. W., Raftery M. A. Mammalian muscle acetylcholine receptor: a supramolecular structure formed by four related proteins. Science. 1982 Dec 17;218(4578):1227–1229. doi: 10.1126/science.7146904. [DOI] [PubMed] [Google Scholar]
  6. Conti-Tronconi B. M., Hunkapiller M. W., Lindstrom J. M., Raftery M. A. Multisubunit structure and amino-terminal sequences of piscine muscle acetylcholine receptor. J Recept Res. 1984;4(7):801–816. doi: 10.3109/10799898409041866. [DOI] [PubMed] [Google Scholar]
  7. Conti-Tronconi B. M., Hunkapiller M. W., Lindstrom J. M., Raftery M. A. Subunit structure of the acetylcholine receptor from Electrophorus electricus. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6489–6493. doi: 10.1073/pnas.79.21.6489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Conti-Tronconi B. M., Raftery M. A. The nicotinic cholinergic receptor: correlation of molecular structure with functional properties. Annu Rev Biochem. 1982;51:491–530. doi: 10.1146/annurev.bi.51.070182.002423. [DOI] [PubMed] [Google Scholar]
  9. Conti-Tronconi B., Gotti C., Paggi P., Rossi A. Acetylcholine receptors in the ciliary ganglion and in the iris muscle of the chick: specific binding and effect on the synaptic transmission of the neurotoxin from Naja naja siamensis. Br J Pharmacol. 1979 May;66(1):33–38. doi: 10.1111/j.1476-5381.1979.tb16094.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Curtis D. R., Crawford J. M. Central synaptic transmission--microelectrophoretic studies. Annu Rev Pharmacol. 1969;9:209–240. doi: 10.1146/annurev.pa.09.040169.001233. [DOI] [PubMed] [Google Scholar]
  11. Dolly J. O., Barnard E. A. Nicotinic acetylcholine receptors: an overview. Biochem Pharmacol. 1984 Mar 15;33(6):841–858. doi: 10.1016/0006-2952(84)90437-4. [DOI] [PubMed] [Google Scholar]
  12. Dunn S. M., Conti-Tronconi B. M., Raftery M. A. Separate sites of low and high affinity for agonists on Torpedo californica acetylcholine receptor. Biochemistry. 1983 May 10;22(10):2512–2518. doi: 10.1021/bi00279a031. [DOI] [PubMed] [Google Scholar]
  13. Dunn S. M., Raftery M. A. Activation and desensitization of Torpedo acetylcholine receptor: evidence for separate binding sites. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6757–6761. doi: 10.1073/pnas.79.22.6757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dunn S. M., Raftery M. A. Multiple binding sites for agonists on Torpedo californica acetylcholine receptor. Biochemistry. 1982 Nov 23;21(24):6264–6272. doi: 10.1021/bi00267a035. [DOI] [PubMed] [Google Scholar]
  15. Hewick R. M., Hunkapiller M. W., Hood L. E., Dreyer W. J. A gas-liquid solid phase peptide and protein sequenator. J Biol Chem. 1981 Aug 10;256(15):7990–7997. [PubMed] [Google Scholar]
  16. Hunkapiller M. W., Hood L. E. Analysis of phenylthiohydantoins by ultrasensitive gradient high-performance liquid chromatography. Methods Enzymol. 1983;91:486–493. doi: 10.1016/s0076-6879(83)91045-5. [DOI] [PubMed] [Google Scholar]
  17. Jacob M. H., Berg D. K., Lindstrom J. M. Shared antigenic determinant between the Electrophorus acetylcholine receptor and a synaptic component on chicken ciliary ganglion neurons. Proc Natl Acad Sci U S A. 1984 May;81(10):3223–3227. doi: 10.1073/pnas.81.10.3223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jacob M. H., Berg D. K. The ultrastructural localization of alpha-bungarotoxin binding sites in relation to synapses on chick ciliary ganglion neurons. J Neurosci. 1983 Feb;3(2):260–271. doi: 10.1523/JNEUROSCI.03-02-00260.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Luzzatto A. C., Tronconi B. C., Paggi P., Rossi A. Binding of Naja naja siamensis alpha-toxin to the chick ciliary ganglion: a light-microscopy autoradiographic study. Neuroscience. 1980;5(2):313–318. doi: 10.1016/0306-4522(80)90106-2. [DOI] [PubMed] [Google Scholar]
  21. Marshall L. M. Synaptic localization of alpha-bungarotoxin binding which blocks nicotinic transmission at frog sympathetic neurons. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1948–1952. doi: 10.1073/pnas.78.3.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mehraban F., Kemshead J. T., Dolly J. O. Properties of monoclonal antibodies to nicotinic acetylcholine receptor from chick muscle. Eur J Biochem. 1984 Jan 2;138(1):53–61. doi: 10.1111/j.1432-1033.1984.tb07880.x. [DOI] [PubMed] [Google Scholar]
  23. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  24. Morley B. J., Dwyer D. S., Strang-Brown P. F., Bradley R. J., Kemp G. E. Evidence that certain peripheral anti-acetylcholine receptor antibodies do not interact with brain BuTX binding sites. Brain Res. 1983 Feb 28;262(1):109–116. doi: 10.1016/0006-8993(83)90474-2. [DOI] [PubMed] [Google Scholar]
  25. Noda M., Furutani Y., Takahashi H., Toyosato M., Tanabe T., Shimizu S., Kikyotani S., Kayano T., Hirose T., Inayama S. Cloning and sequence analysis of calf cDNA and human genomic DNA encoding alpha-subunit precursor of muscle acetylcholine receptor. 1983 Oct 27-Nov 2Nature. 305(5937):818–823. doi: 10.1038/305818a0. [DOI] [PubMed] [Google Scholar]
  26. Noda M., Takahashi H., Tanabe T., Toyosato M., Furutani Y., Hirose T., Asai M., Inayama S., Miyata T., Numa S. Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature. 1982 Oct 28;299(5886):793–797. doi: 10.1038/299793a0. [DOI] [PubMed] [Google Scholar]
  27. Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Furutani Y., Hirose T., Takashima H., Inayama S., Miyata T. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature. 1983 Apr 7;302(5908):528–532. doi: 10.1038/302528a0. [DOI] [PubMed] [Google Scholar]
  28. Norman R. I., Mehraban F., Barnard E. A., Dolly J. O. Nicotinic acetylcholine receptor from chick optic lobe. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1321–1325. doi: 10.1073/pnas.79.4.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oswald R. E., Freeman J. A. Alpha-bungarotoxin binding and central nervous system nicotinic acetylcholine receptors. Neuroscience. 1981;6(1):1–14. doi: 10.1016/0306-4522(81)90239-6. [DOI] [PubMed] [Google Scholar]
  30. Patrick J., Stallcup W. B. Immunological distinction between acetylcholine receptor and the alpha-bungarotoxin-binding component on sympathetic neurons. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4689–4692. doi: 10.1073/pnas.74.10.4689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Quik M., Lamarca M. V. Blockade of transmission in rat sympathetic ganglia by a toxin which co-purifies with alpha-bungarotoxin. Brain Res. 1982 Apr 29;238(2):385–399. doi: 10.1016/0006-8993(82)90112-3. [DOI] [PubMed] [Google Scholar]
  32. Raftery M. A., Hunkapiller M. W., Strader C. D., Hood L. E. Acetylcholine receptor: complex of homologous subunits. Science. 1980 Jun 27;208(4451):1454–1456. doi: 10.1126/science.7384786. [DOI] [PubMed] [Google Scholar]
  33. Sumikawa K., Houghton M., Smith J. C., Bell L., Richards B. M., Barnard E. A. The molecular cloning and characterisation of cDNA coding for the alpha subunit of the acetylcholine receptor. Nucleic Acids Res. 1982 Oct 11;10(19):5809–5822. doi: 10.1093/nar/10.19.5809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Syapin P. J., Salvaterra P. M., Engelhardt J. K. Neuronal-like features of TE671 cells: presence of a functional nicotinic cholinergic receptor. Brain Res. 1982 Jan 14;231(2):365–377. doi: 10.1016/0006-8993(82)90373-0. [DOI] [PubMed] [Google Scholar]
  35. Toldi J., Joó F., Adám G., Fehér O., Wolff J. R. Inhibition of synaptic transmission in the rat superior cervical ganglion by intracarotid infusion of bungarotoxin. Brain Res. 1983 Mar 7;262(2):323–327. doi: 10.1016/0006-8993(83)91027-2. [DOI] [PubMed] [Google Scholar]
  36. Wonnacott S., Harrison R., Lunt G. Immunological cross-reactivity between the alpha-bungarotoxin-binding component from rat brain and nicotinic acetylcholine receptor. J Neuroimmunol. 1982 Aug;3(1):1–13. doi: 10.1016/0165-5728(82)90013-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES