Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Aug;82(15):5227–5230. doi: 10.1073/pnas.82.15.5227

Cholinergic ventral forebrain grafts into the neocortex improve passive avoidance memory in a rat model of Alzheimer disease.

A Fine, S B Dunnett, A Björklund, S D Iversen
PMCID: PMC390533  PMID: 3860857

Abstract

The memory dysfunction of Alzheimer disease has been associated with a cortical cholinergic deficiency and loss of cholinergic neurons of the nucleus basalis of Meynert. This cholinergic component of Alzheimer disease can be modeled in the rat by ibotenic acid lesions of the cholinergic nucleus basalis magnocellularis. The memory impairment caused by such unilateral lesions, as reflected in passive avoidance behavior, is reversed by grafts into the deafferented neocortex of embryonic neurons of the cholinergic ventral forebrain, but not by grafts of noncholinergic hippocampal cells.

Full text

PDF
5227

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartus R. T., Dean R. L., 3rd, Beer B., Lippa A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982 Jul 30;217(4558):408–414. doi: 10.1126/science.7046051. [DOI] [PubMed] [Google Scholar]
  2. Björklund A., Dunnett S. B., Stenevi U., Lewis M. E., Iversen S. D. Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res. 1980 Oct 20;199(2):307–333. doi: 10.1016/0006-8993(80)90692-7. [DOI] [PubMed] [Google Scholar]
  3. Bowen D. M., Smith C. B., White P., Davison A. N. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain. 1976 Sep;99(3):459–496. doi: 10.1093/brain/99.3.459. [DOI] [PubMed] [Google Scholar]
  4. Coyle J. T., Price D. L., DeLong M. R. Alzheimer's disease: a disorder of cortical cholinergic innervation. Science. 1983 Mar 11;219(4589):1184–1190. doi: 10.1126/science.6338589. [DOI] [PubMed] [Google Scholar]
  5. Davies P., Maloney A. J. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet. 1976 Dec 25;2(8000):1403–1403. doi: 10.1016/s0140-6736(76)91936-x. [DOI] [PubMed] [Google Scholar]
  6. Deutsch J. A. The cholinergic synapse and the site of memory. Science. 1971 Nov 19;174(4011):788–794. doi: 10.1126/science.174.4011.788. [DOI] [PubMed] [Google Scholar]
  7. Dunnett S. B., Low W. C., Iversen S. D., Stenevi U., Björklund A. Septal transplants restore maze learning in rats with fornix-fimbria lesions. Brain Res. 1982 Nov 18;251(2):335–348. doi: 10.1016/0006-8993(82)90751-x. [DOI] [PubMed] [Google Scholar]
  8. Emson P. C., Lindvall O. Distribution of putative neurotransmitters in the neocortex. Neuroscience. 1979;4(1):1–30. doi: 10.1016/0306-4522(79)90215-x. [DOI] [PubMed] [Google Scholar]
  9. Flicker C., Dean R. L., Watkins D. L., Fisher S. K., Bartus R. T. Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic input to the cerebral cortex in the rat. Pharmacol Biochem Behav. 1983 Jun;18(6):973–981. doi: 10.1016/s0091-3057(83)80023-9. [DOI] [PubMed] [Google Scholar]
  10. Fonnum F. A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem. 1975 Feb;24(2):407–409. doi: 10.1111/j.1471-4159.1975.tb11895.x. [DOI] [PubMed] [Google Scholar]
  11. Friedman E., Lerer B., Kuster J. Loss of cholinergic neurons in the rat neocortex produces deficits in passive avoidance learning. Pharmacol Biochem Behav. 1983 Aug;19(2):309–312. doi: 10.1016/0091-3057(83)90057-6. [DOI] [PubMed] [Google Scholar]
  12. KOELLE G. B. The histochemical localization of cholinesterases in the central nervous system of the rat. J Comp Neurol. 1954 Feb;100(1):211–235. doi: 10.1002/cne.901000108. [DOI] [PubMed] [Google Scholar]
  13. Lo Conte G., Bartolini L., Casamenti F., Marconcini-Pepeu I., Pepeu G. Lesions of cholinergic forebrain nuclei: changes in avoidance behavior and scopolamine actions. Pharmacol Biochem Behav. 1982 Nov;17(5):933–937. doi: 10.1016/0091-3057(82)90475-0. [DOI] [PubMed] [Google Scholar]
  14. Morrison J. H., Rogers J., Scherr S., Benoit R., Bloom F. E. Somatostatin immunoreactivity in neuritic plaques of Alzheimer's patients. Nature. 1985 Mar 7;314(6006):90–92. doi: 10.1038/314090a0. [DOI] [PubMed] [Google Scholar]
  15. Pearson R. C., Sofroniew M. V., Cuello A. C., Powell T. P., Eckenstein F., Esiri M. M., Wilcock G. K. Persistence of cholinergic neurons in the basal nucleus in a brain with senile dementia of the Alzheimer's type demonstrated by immunohistochemical staining for choline acetyltransferase. Brain Res. 1983 Dec 19;289(1-2):375–379. doi: 10.1016/0006-8993(83)90046-x. [DOI] [PubMed] [Google Scholar]
  16. Perlow M. J., Freed W. J., Hoffer B. J., Seiger A., Olson L., Wyatt R. J. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science. 1979 May 11;204(4393):643–647. doi: 10.1126/science.571147. [DOI] [PubMed] [Google Scholar]
  17. Perry E. K., Tomlinson B. E., Blessed G., Bergmann K., Gibson P. H., Perry R. H. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J. 1978 Nov 25;2(6150):1457–1459. doi: 10.1136/bmj.2.6150.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roberts G. W., Crow T. J., Polak J. M. Location of neuronal tangles in somatostatin neurones in Alzheimer's disease. Nature. 1985 Mar 7;314(6006):92–94. doi: 10.1038/314092a0. [DOI] [PubMed] [Google Scholar]
  19. Schmidt R. H., Björklund A., Stenevi U. Intracerebral grafting of dissociated CNS tissue suspensions: a new approach for neuronal transplantation to deep brain sites. Brain Res. 1981 Aug 10;218(1-2):347–356. doi: 10.1016/0006-8993(81)91313-5. [DOI] [PubMed] [Google Scholar]
  20. Schwarcz R., Hökfelt T., Fuxe K., Jonsson G., Goldstein M., Terenius L. Ibotenic acid-induced neuronal degeneration: a morphological and neurochemical study. Exp Brain Res. 1979 Oct;37(2):199–216. doi: 10.1007/BF00237708. [DOI] [PubMed] [Google Scholar]
  21. Wenk G. L., Olton D. S. Recovery of neocortical choline acetyltransferase activity following ibotenic acid injection into the nucleus basalis of Meynert in rats. Brain Res. 1984 Feb 13;293(1):184–186. doi: 10.1016/0006-8993(84)91468-9. [DOI] [PubMed] [Google Scholar]
  22. Whitehouse P. J., Price D. L., Struble R. G., Clark A. W., Coyle J. T., Delon M. R. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science. 1982 Mar 5;215(4537):1237–1239. doi: 10.1126/science.7058341. [DOI] [PubMed] [Google Scholar]
  23. Wilcock G. K., Esiri M. M., Bowen D. M., Smith C. C. The nucleus basalis in Alzheimer's disease: cell counts and cortical biochemistry. Neuropathol Appl Neurobiol. 1983 May-Jun;9(3):175–179. doi: 10.1111/j.1365-2990.1983.tb00105.x. [DOI] [PubMed] [Google Scholar]
  24. Winn P., Tarbuck A., Dunnett S. B. Ibotenic acid lesions of the lateral hypothalamus: comparison with the electrolytic lesion syndrome. Neuroscience. 1984 May;12(1):225–240. doi: 10.1016/0306-4522(84)90149-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES