Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jun 25;93(13):6510–6515. doi: 10.1073/pnas.93.13.6510

Reduction of two functional gamma-globin genes to one: an evolutionary trend in New World monkeys (infraorder Platyrrhini).

C H Chiu 1, H Schneider 1, M P Schneider 1, I Sampaio 1, C Meireles 1, J L Slightom 1, D L Gumucio 1, M Goodman 1
PMCID: PMC39054  PMID: 8692846

Abstract

Nucleotide sequences were determined for the gamma1- and gamma2-globin loci from representatives of the seven anciently separated clades in the three extant platyrrhine families (Atelidae, Pitheciidae, and Cebidae). These sequences revealed an evolutionary trend in New World monkeys either to inactivate the gamma1 gene or to fuse it with the gamma2 gene, i.e. to have only one functional fetally expressed gamma gene. This trend is clearly evident in six of the seven clades: (i) it occurred in atelids by deletion of most of the gamma1 gene in the basal ancestor of this clade; (ii-iv) in pitheciid titi, saki, and cebid capuchin monkeys by potentially debilitating nucleotide substitutions in the proximal CCAAT box of the gamma1 promoters and (v and vi) in cebid owl and squirrel monkeys by crossovers that fused 5' sequence from gamma1 with 3' sequence from gamma2. In the five clades with gamma1 and gamma2 loci separated by intergenic sequences (the fifth clade being the cebid marmosets), the gamma2 genes retained an unaltered proximal CCAAT motif and their gamma2 promoters accumulated fewer nucleotide substitutions than did the gamma1 promoters. Thus, phylogenetic considerations indicate that the stem platyrrhines, ancestral to all New World monkeys, had gamma2 as the primary fetally expressed gamma gene. A further inference is that when the earlier stem anthropoid gamma gene duplicated, gamma2 (at its greater downstream distance from epsilon) could evade embryonic activation by the locus control region but could be fetally activated once released by regulatory mutations from fetal repressors.

Full text

PDF
6510

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey W. J., Hayasaka K., Skinner C. G., Kehoe S., Sieu L. C., Slightom J. L., Goodman M. Reexamination of the African hominoid trichotomy with additional sequences from the primate beta-globin gene cluster. Mol Phylogenet Evol. 1992 Jun;1(2):97–135. doi: 10.1016/1055-7903(92)90024-b. [DOI] [PubMed] [Google Scholar]
  2. Barrie P. A., Jeffreys A. J., Scott A. F. Evolution of the beta-globin gene cluster in man and the primates. J Mol Biol. 1981 Jul 5;149(3):319–336. doi: 10.1016/0022-2836(81)90476-9. [DOI] [PubMed] [Google Scholar]
  3. Cabot E. L., Beckenbach A. T. Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Comput Appl Biosci. 1989 Jul;5(3):233–234. doi: 10.1093/bioinformatics/5.3.233. [DOI] [PubMed] [Google Scholar]
  4. Collins F. S., Weissman S. M. The molecular genetics of human hemoglobin. Prog Nucleic Acid Res Mol Biol. 1984;31:315–462. doi: 10.1016/s0079-6603(08)60382-7. [DOI] [PubMed] [Google Scholar]
  5. Dierks P., van Ooyen A., Cochran M. D., Dobkin C., Reiser J., Weissmann C. Three regions upstream from the cap site are required for efficient and accurate transcription of the rabbit beta-globin gene in mouse 3T6 cells. Cell. 1983 Mar;32(3):695–706. doi: 10.1016/0092-8674(83)90055-7. [DOI] [PubMed] [Google Scholar]
  6. Engel J. D. Developmental regulation of human beta-globin gene transcription: a switch of loyalties? Trends Genet. 1993 Sep;9(9):304–309. doi: 10.1016/0168-9525(93)90248-g. [DOI] [PubMed] [Google Scholar]
  7. Fitch D. H., Bailey W. J., Tagle D. A., Goodman M., Sieu L., Slightom J. L. Duplication of the gamma-globin gene mediated by L1 long interspersed repetitive elements in an early ancestor of simian primates. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7396–7400. doi: 10.1073/pnas.88.16.7396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fraser P., Pruzina S., Antoniou M., Grosveld F. Each hypersensitive site of the human beta-globin locus control region confers a different developmental pattern of expression on the globin genes. Genes Dev. 1993 Jan;7(1):106–113. doi: 10.1101/gad.7.1.106. [DOI] [PubMed] [Google Scholar]
  9. Goodman M., Koop B. F., Czelusniak J., Weiss M. L. The eta-globin gene. Its long evolutionary history in the beta-globin gene family of mammals. J Mol Biol. 1984 Dec 25;180(4):803–823. doi: 10.1016/0022-2836(84)90258-4. [DOI] [PubMed] [Google Scholar]
  10. Gumucio D. L., Shelton D. A., Blanchard-McQuate K., Gray T., Tarle S., Heilstedt-Williamson H., Slightom J. L., Collins F., Goodman M. Differential phylogenetic footprinting as a means to identify base changes responsible for recruitment of the anthropoid gamma gene to a fetal expression pattern. J Biol Chem. 1994 May 27;269(21):15371–15380. [PubMed] [Google Scholar]
  11. Hanscombe O., Whyatt D., Fraser P., Yannoutsos N., Greaves D., Dillon N., Grosveld F. Importance of globin gene order for correct developmental expression. Genes Dev. 1991 Aug;5(8):1387–1394. doi: 10.1101/gad.5.8.1387. [DOI] [PubMed] [Google Scholar]
  12. Harada M. L., Schneider H., Schneider M. P., Sampaio I., Czelusniak J., Goodman M. DNA evidence on the phylogenetic systematics of New World monkeys: support for the sister-grouping of Cebus and Saimiri from two unlinked nuclear genes. Mol Phylogenet Evol. 1995 Sep;4(3):331–349. doi: 10.1006/mpev.1995.1029. [DOI] [PubMed] [Google Scholar]
  13. Hardies S. C., Edgell M. H., Hutchison C. A., 3rd Evolution of the mammalian beta-globin gene cluster. J Biol Chem. 1984 Mar 25;259(6):3748–3756. [PubMed] [Google Scholar]
  14. Hardison R., Xu J., Jackson J., Mansberger J., Selifonova O., Grotch B., Biesecker J., Petrykowska H., Miller W. Comparative analysis of the locus control region of the rabbit beta-like gene cluster: HS3 increases transient expression of an embryonic epsilon-globin gene. Nucleic Acids Res. 1993 Mar 11;21(5):1265–1272. doi: 10.1093/nar/21.5.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harris S., Barrie P. A., Weiss M. L., Jeffreys A. J. The primate psi beta 1 gene. An ancient beta-globin pseudogene. J Mol Biol. 1984 Dec 25;180(4):785–801. doi: 10.1016/0022-2836(84)90257-2. [DOI] [PubMed] [Google Scholar]
  16. Hayasaka K., Fitch D. H., Slightom J. L., Goodman M. Fetal recruitment of anthropoid gamma-globin genes. Findings from phylogenetic analyses involving the 5'-flanking sequences of the psi gamma 1 globin gene of spider monkey Ateles geoffroyi. J Mol Biol. 1992 Apr 5;224(3):875–881. doi: 10.1016/0022-2836(92)90568-5. [DOI] [PubMed] [Google Scholar]
  17. Hayasaka K., Skinner C. G., Goodman M., Slightom J. L. The gamma-globin genes and their flanking sequences in primates: findings with nucleotide sequences of capuchin monkey and tarsier. Genomics. 1993 Oct;18(1):20–28. doi: 10.1006/geno.1993.1422. [DOI] [PubMed] [Google Scholar]
  18. Huisman T. H., Schroeder W. A., Keeling M. E., Gengozian N., Miller A., Brodie A. R., Shelton J. R., Shelton J. B., Apell G. Search for nonallelic structural genes for gamma-chains of fetal hemoglobin in some primates. Biochem Genet. 1973 Nov;10(3):309–318. doi: 10.1007/BF00485708. [DOI] [PubMed] [Google Scholar]
  19. Koop B. F., Siemieniak D., Slightom J. L., Goodman M., Dunbar J., Wright P. C., Simons E. L. Tarsius delta- and beta-globin genes: conversions, evolution, and systematic implications. J Biol Chem. 1989 Jan 5;264(1):68–79. [PubMed] [Google Scholar]
  20. Meireles C. M., Schneider M. P., Sampaio M. I., Schneider H., Slightom J. L., Chiu C. H., Neiswanger K., Gumucio D. L., Czelusniak J., Goodman M. Fate of a redundant gamma-globin gene in the atelid clade of New World monkeys: implications concerning fetal globin gene expression. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2607–2611. doi: 10.1073/pnas.92.7.2607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Myers R. M., Tilly K., Maniatis T. Fine structure genetic analysis of a beta-globin promoter. Science. 1986 May 2;232(4750):613–618. doi: 10.1126/science.3457470. [DOI] [PubMed] [Google Scholar]
  22. Peterson K. R., Stamatoyannopoulos G. Role of gene order in developmental control of human gamma- and beta-globin gene expression. Mol Cell Biol. 1993 Aug;13(8):4836–4843. doi: 10.1128/mcb.13.8.4836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rogan P. K., Pan J., Weissman S. M. L1 repeat elements in the human epsilon-G gamma-globin gene intergenic region: sequence analysis and concerted evolution within this family. Mol Biol Evol. 1987 Jul;4(4):327–342. doi: 10.1093/oxfordjournals.molbev.a040448. [DOI] [PubMed] [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schneider H., Schneider M. P., Sampaio I., Harada M. L., Stanhope M., Czelusniak J., Goodman M. Molecular phylogeny of the New World monkeys (Platyrrhini, primates). Mol Phylogenet Evol. 1993 Sep;2(3):225–242. doi: 10.1006/mpev.1993.1022. [DOI] [PubMed] [Google Scholar]
  26. Shen S. H., Slightom J. L., Smithies O. A history of the human fetal globin gene duplication. Cell. 1981 Oct;26(2 Pt 2):191–203. doi: 10.1016/0092-8674(81)90302-0. [DOI] [PubMed] [Google Scholar]
  27. Smit A. F., Tóth G., Riggs A. D., Jurka J. Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J Mol Biol. 1995 Feb 24;246(3):401–417. doi: 10.1006/jmbi.1994.0095. [DOI] [PubMed] [Google Scholar]
  28. Sukumaran P. K., Nakatsuji T., Gardiner M. B., Reese A. L., Gilman J. G., Huisman T. H. Gamma thalassemia resulting from the deletion of a gamma-globin gene. Nucleic Acids Res. 1983 Jul 11;11(13):4635–4643. [PMC free article] [PubMed] [Google Scholar]
  29. Superti-Furga G., Barberis A., Schaffner G., Busslinger M. The -117 mutation in Greek HPFH affects the binding of three nuclear factors to the CCAAT region of the gamma-globin gene. EMBO J. 1988 Oct;7(10):3099–3107. doi: 10.1002/j.1460-2075.1988.tb03176.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tagle D. A., Koop B. F., Goodman M., Slightom J. L., Hess D. L., Jones R. T. Embryonic epsilon and gamma globin genes of a prosimian primate (Galago crassicaudatus). Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints. J Mol Biol. 1988 Sep 20;203(2):439–455. doi: 10.1016/0022-2836(88)90011-3. [DOI] [PubMed] [Google Scholar]
  31. Tagle D. A., Stanhope M. J., Siemieniak D. R., Benson P., Goodman M., Slightom J. L. The beta globin gene cluster of the prosimian primate Galago crassicaudatus: nucleotide sequence determination of the 41-kb cluster and comparative sequence analyses. Genomics. 1992 Jul;13(3):741–760. doi: 10.1016/0888-7543(92)90150-q. [DOI] [PubMed] [Google Scholar]
  32. Wijgerde M., Grosveld F., Fraser P. Transcription complex stability and chromatin dynamics in vivo. Nature. 1995 Sep 21;377(6546):209–213. doi: 10.1038/377209a0. [DOI] [PubMed] [Google Scholar]
  33. Zeng Y. T., Huang S. Z., Nakatsuji T., Huisman T. H. -G gamma A gamma-Thalassemia and gamma-chain variants in Chinese newborn babies. Am J Hematol. 1985 Mar;18(3):235–242. doi: 10.1002/ajh.2830180303. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES