Abstract
We reported previously that human cells after neoplastic transformation in culture had acquired an increased susceptibility to chromatid damage induced by x-irradiation during the G2 phase of the cell cycle. Evidence suggested that this results from deficient DNA repair during G2 phase. Cells derived from human tumors also showed enhanced G2-phase chromosomal radiosensitivity. Furthermore, skin fibroblasts from individuals with genetic diseases predisposing to a high risk of cancer, including ataxia-telangiectasia, Bloom syndrome, Fanconi anemia, and xeroderma pigmentosum exhibited enhanced G2-phase chromosomal radiosensitivity. The present study shows that apparently normal skin fibroblasts from individuals with familial cancer--i.e., from families with a history of neoplastic disease--also exhibit enhanced G2-phase chromosomal radiosensitivity. This radiosensitivity appears, therefore, to be associated with both a genetic predisposition to cancer and a malignant neoplastic state. Furthermore, enhanced G2-phase chromosomal radiosensitivity may provide the basis for an assay to detect genetic susceptibility to cancer.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bech-Hansen N. T., Sell B. M., Mulvihill J. J., Paterson M. C. Association of in vitro radiosensitivity and cancer in a family with acute myelogenous leukemia. Cancer Res. 1981 Jun;41(6):2046–2050. [PubMed] [Google Scholar]
- Bender M. A., Griggs H. G., Bedford J. S. Mechanisms of chromosomal aberration production. 3. Chemicals and ionizing radiation. Mutat Res. 1974 May;23(2):197–212. doi: 10.1016/0027-5107(74)90140-7. [DOI] [PubMed] [Google Scholar]
- Bigelow S. B., Rary J. M., Bender M. A. G2 chromosomal radiosensitivity in Fanconi's anemia. Mutat Res. 1979 Nov;63(1):189–199. doi: 10.1016/0027-5107(79)90115-5. [DOI] [PubMed] [Google Scholar]
- Cheng W. S., Mulvihill J. J., Greene M. H., Pickle L. W., Tsai S., Whang-Peng J. Sister chromatid exchanges and chromosomes in chronic myelogenous leukemia and cancer families. Int J Cancer. 1979 Jan 15;23(1):8–13. doi: 10.1002/ijc.2910230103. [DOI] [PubMed] [Google Scholar]
- Cherry L. M., Hsu T. C. Bleomycin-induced chromosome damage in lymphocytes of medullary thyroid carcinoma patients and their family members. Anticancer Res. 1983 Nov-Dec;3(6):367–372. [PubMed] [Google Scholar]
- Gantt R., Parshad R., Ewig R. A., Sanford K. K., Jones G. M., Tarone R. E., Kohn K. W. Fluorescent light-induced DNA crosslinkage and chromatid breaks in mouse cells in culture. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3809–3812. doi: 10.1073/pnas.75.8.3809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heimler A., Friedman E., Rosenthal A. D. Naevoid basal cell carcinoma syndrome and Charcot-Marie-Tooth disease: two autosomal dominant disorders segregating in a family. J Med Genet. 1978 Aug;15(4):288–291. doi: 10.1136/jmg.15.4.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howell J. N., Greene M. H., Corner R. C., Maher V. M., McCormick J. J. Fibroblasts from patients with hereditary cutaneous malignant melanoma are abnormally sensitive to the mutagenic effect of simulated sunlight and 4-nitroquinoline 1-oxide. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1179–1183. doi: 10.1073/pnas.81.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsu T. C., Cherry L. M., Pathak S. Induction of chromatid breakage by clastogens in cells in G2 phase. Mutat Res. 1982 Mar;93(1):185–193. doi: 10.1016/0027-5107(82)90134-8. [DOI] [PubMed] [Google Scholar]
- Imray F. P., Smith P. J., Relf W., Kidson C. Wilms' tumour: association with cellular sensitivity to mitomycin C in patients and first-degree relatives. Lancet. 1984 May 26;1(8387):1148–1151. doi: 10.1016/s0140-6736(84)91394-1. [DOI] [PubMed] [Google Scholar]
- Kakunaga T. Neoplastic transformation of human diploid fibroblast cells by chemical carcinogens. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1334–1338. doi: 10.1073/pnas.75.3.1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knudson A. G., Jr, Meadows A. T. Sounding board. Regression of neuroblastoma IV-S: a genetic hypothesis. N Engl J Med. 1980 May 29;302(22):1254–1256. doi: 10.1056/NEJM198005293022210. [DOI] [PubMed] [Google Scholar]
- Knudson A. G., Jr, Strong L. C. Mutation and cancer: a model for Wilms' tumor of the kidney. J Natl Cancer Inst. 1972 Feb;48(2):313–324. [PubMed] [Google Scholar]
- Little J. B., Nove J., Weichselbaum R. R. Abnormal sensitivity of diploid skin fibroblasts from a family with gardner's syndrome to the lethal effects of X-irradiation, ultraviolet light and mitomycin-C. Mutat Res. 1980 Apr;70(2):241–250. doi: 10.1016/0027-5107(80)90164-5. [DOI] [PubMed] [Google Scholar]
- McKeen E. A., Miller R. W., Mulvihill J. J., Blattner W. A., Levine A. S. Familial leukaemia and SV40 transformation. Lancet. 1977 Aug 6;2(8032):310–310. doi: 10.1016/s0140-6736(77)91007-8. [DOI] [PubMed] [Google Scholar]
- Meadows A. T., D'Angio G. J., Miké V., Banfi A., Harris C., Jenkin R. D., Schwartz A. Patterns of second malignant neoplasms in children. Cancer. 1977 Oct;40(4 Suppl):1903–1911. doi: 10.1002/1097-0142(197710)40:4+<1903::aid-cncr2820400822>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
- Meadows A. T., Jarrett P. Pigmented nevi, Wilms tumor, and second malignant neoplasms. J Pediatr. 1978 Nov;93(5):889–890. doi: 10.1016/s0022-3476(78)81117-2. [DOI] [PubMed] [Google Scholar]
- Natarajan A. T., Obe G. Molecular mechanisms involved in the production of chromosomal aberrations. I. Utilization of Neurospora endonuclease for the study of aberration production in G2 stage of the cell cycle. Mutat Res. 1978 Oct;52(1):137–149. doi: 10.1016/0027-5107(78)90102-1. [DOI] [PubMed] [Google Scholar]
- Parshad R., Gantt R., Sanford K. K., Jones G. M. Chromosomal radiosensitivity of human tumor cells during the G2 cell cycle period. Cancer Res. 1984 Dec;44(12 Pt 1):5577–5582. [PubMed] [Google Scholar]
- Parshad R., Gantt R., Sanford K. K., Jones G. M., Tarone R. E. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative. J Natl Cancer Inst. 1982 Aug;69(2):409–414. [PubMed] [Google Scholar]
- Parshad R., Sanford K. K., Jones G. M. Chromatid damage after G2 phase x-irradiation of cells from cancer-prone individuals implicates deficiency in DNA repair. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5612–5616. doi: 10.1073/pnas.80.18.5612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parshad R., Sanford K. K., Jones G. M., Tarone R. E. Fluorescent light-induced chromosome damage and its prevention in mouse cells in culture. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1830–1833. doi: 10.1073/pnas.75.4.1830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parshad R., Sanford K. K., Jones G. M., Tarone R. E. G2 chromosomal radiosensitivity of ataxia-telangiectasia heterozygotes. Cancer Genet Cytogenet. 1985 Jan 1;14(1-2):163–168. doi: 10.1016/0165-4608(85)90227-4. [DOI] [PubMed] [Google Scholar]
- Parshad R., Sanford K. K., Jones G. M., Tarone R. E., Hoffman H. A., Grier A. H. Susceptibility to fluorescent light-induced chromatid breaks associated with DNA repair deficiency and malignant transformation in culture. Cancer Res. 1980 Dec;40(12):4415–4419. [PubMed] [Google Scholar]
- Parshad R., Sanford K. K., Jones G. M., Tarone R. E. Neoplastic transformation of human cells in culture associated with deficient repair of light-induced chromosomal DNA damage. Int J Cancer. 1982 Aug 15;30(2):153–159. doi: 10.1002/ijc.2910300205. [DOI] [PubMed] [Google Scholar]
- Parshad R., Sanford K. K., Taylor W. G., Tarone R. E., Jones G. M., Baeck A. E. Effect of intensity and wavelength of fluorescent light on chromosome damage in cultured mouse cells. Photochem Photobiol. 1979 May;29(5):971–975. doi: 10.1111/j.1751-1097.1979.tb07800.x. [DOI] [PubMed] [Google Scholar]
- Parshad R., Taylor W. G., Sanford K. K., Camalier R. F., Gantt R., Tarone R. E. Fluorescent light-induced chromosome damage in human IMR-90 fibroblasts. Role of hydrogen peroxide and related free radicals. Mutat Res. 1980 Nov;73(1):115–124. doi: 10.1016/0027-5107(80)90140-2. [DOI] [PubMed] [Google Scholar]
- Pero R. W., Miller D. G., Lipkin M., Markowitz M., Gupta S., Winawer S. J., Enker W., Good R. Reduced capacity for DNA repair synthesis in patients with or genetically predisposed to colorectal cancer. J Natl Cancer Inst. 1983 May;70(5):867–875. [PubMed] [Google Scholar]
- Preston R. J. The effect of cytosine arabinoside on the frequency of X-ray-induced chromosome aberrations in normal human leukocytes. Mutat Res. 1980 Jan;69(1):71–79. doi: 10.1016/0027-5107(80)90177-3. [DOI] [PubMed] [Google Scholar]
- Preston R. J. The use of inhibitors of DNA-repair in the study of the mechanisms of induction of chromosome aberrations. Cytogenet Cell Genet. 1982;33(1-2):20–26. doi: 10.1159/000131721. [DOI] [PubMed] [Google Scholar]
- Ramsay R. G., Chen P., Imray F. P., Kidson C., Lavin M. F., Hockey A. Familial melanoma associated with dominant ultraviolet radiation sensitivity. Cancer Res. 1982 Jul;42(7):2909–2912. [PubMed] [Google Scholar]
- Savage J. R. Classification and relationships of induced chromosomal structual changes. J Med Genet. 1976 Apr;13(2):103–122. doi: 10.1136/jmg.13.2.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz A. D., Lee H., Baum E. S. Leukemia in children with Wilms tumor. J Pediatr. 1975 Sep;87(3):374–376. doi: 10.1016/s0022-3476(75)80638-x. [DOI] [PubMed] [Google Scholar]
- Singh A. Chemical and biochemical aspects of superoxide radicals and related species of activated oxygen. Can J Physiol Pharmacol. 1982 Nov;60(11):1330–1345. doi: 10.1139/y82-200. [DOI] [PubMed] [Google Scholar]
- Smith P. J., Greene M. H., Adams D., Paterson M. C. Abnormal responses to the carcinogen 4-nitroquinoline 1-oxide of cultured fibroblasts from patients with dysplastic nevus syndrome and hereditary cutaneous malignant melanoma. Carcinogenesis. 1983;4(7):911–916. doi: 10.1093/carcin/4.7.911. [DOI] [PubMed] [Google Scholar]
- Smith P. J., Greene M. H., Devlin D. A., McKeen E. A., Paterson M. C. Abnormal sensitivity to UV-radiation in cultured skin fibroblasts from patients with hereditary cutaneous malignant melanoma and dysplastic nevus syndrome. Int J Cancer. 1982 Jul 15;30(1):39–45. doi: 10.1002/ijc.2910300108. [DOI] [PubMed] [Google Scholar]
- Snyder A. L., Henderson E. S., Li F. P., Todaro G. J. Possible inherited leukaemogenic factors in familial acute myelogenous leukaemia. Lancet. 1970 Mar 21;1(7647):586–589. doi: 10.1016/s0140-6736(70)91626-0. [DOI] [PubMed] [Google Scholar]
- Taylor A. M. Unrepaired DNA strand breaks in irradiated ataxia telangiectasia lymphocytes suggested from cytogenetic observations. Mutat Res. 1978 Jun;50(3):407–418. doi: 10.1016/0027-5107(78)90045-3. [DOI] [PubMed] [Google Scholar]
