Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Aug;82(16):5437–5441. doi: 10.1073/pnas.82.16.5437

The Escherichia coli supX locus is topA, the structural gene for DNA topoisomerase I.

P Margolin, L Zumstein, R Sternglanz, J C Wang
PMCID: PMC390584  PMID: 2991925

Abstract

Mutations in the supX locus, which result in the absence of DNA topoisomerase I enzyme activity in both Salmonella typhimurium and Escherichia coli, are all selected as suppressors of the leu-500 promoter mutation in S. typhimurium. To determine whether the supX locus is the structural gene topA for the DNA topoisomerase I enzyme or is a positive-acting regulator/activator gene for a nearby topA structural gene, nonsense mutations were selected in the E. coli supX gene carried on an F' episome in S. typhimurium cells. The cysB-topA region of the episomes with nonsense-mutant supX alleles were then cloned onto plasmid pBR322 and transformed into E. coli cells lacking a chromosomal supX gene. Three such E. coli strains, each carrying cloned DNA from episomes with different nonsense-mutant supX alleles, all lacked DNA topoisomerase I activity but expressed antigenic determinants specific to the enzyme; control cells lacked both enzyme activity and antigenic determinants. Maxicell studies of plasmid-coded proteins demonstrated the absence of the DNA topoisomerase I protein (100 kDa) in the three strains but the appearance of a new smaller peptide in each (36, 47, and 64 kDa). These new peptides must represent fragments of the enzyme resulting from translation termination at the supX nonsense codons and confirm the interpretation that the supX gene is topA, the structural gene for DNA topoisomerase I.

Full text

PDF
5437

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barak Z., Gilvarg C. Triornithine-resistant strains of Escherichia coli. Isolation, definition, and genetic studies. J Biol Chem. 1974 Jan 10;249(1):143–148. [PubMed] [Google Scholar]
  2. Bauerle R. H., Margolin P. A multifunctional enzyme complex in the tryptophan pathway of Salmonella typhimurium: comparison of polarity and pseudopolarity mutations. Cold Spring Harb Symp Quant Biol. 1966;31:203–214. doi: 10.1101/sqb.1966.031.01.028. [DOI] [PubMed] [Google Scholar]
  3. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed] [Google Scholar]
  4. Brent R., Ptashne M. The lexA gene product represses its own promoter. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1932–1936. doi: 10.1073/pnas.77.4.1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Broome S., Gilbert W. Immunological screening method to detect specific translation products. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2746–2749. doi: 10.1073/pnas.75.6.2746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Corwin L. M., Fanning G. R., Feldman F., Margolin P. Mutation leading to increased sensitivity to chromium in Salmonella typhimurium. J Bacteriol. 1966 Apr;91(4):1509–1515. doi: 10.1128/jb.91.4.1509-1515.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Drlica K. Biology of bacterial deoxyribonucleic acid topoisomerases. Microbiol Rev. 1984 Dec;48(4):273–289. doi: 10.1128/mr.48.4.273-289.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dubnau E., Lenny A. B., Margolin P. Nonsense mutations of the supX locus: further characterization of the supX mutant phenotype. Mol Gen Genet. 1973 Nov 12;126(3):191–200. doi: 10.1007/BF00267530. [DOI] [PubMed] [Google Scholar]
  9. Dubnau E., Margolin P. Suppression of promoter mutations by the pleiotropic supx mutations. Mol Gen Genet. 1972;117(2):91–112. doi: 10.1007/BF00267607. [DOI] [PubMed] [Google Scholar]
  10. Gellert M. DNA topoisomerases. Annu Rev Biochem. 1981;50:879–910. doi: 10.1146/annurev.bi.50.070181.004311. [DOI] [PubMed] [Google Scholar]
  11. Godson G. N., Sinsheimer R. L. The replication of bacteriophage MS2. VI. Interaction between bacteriophage RNA and cellular components in MS2-infected Escherichia coli. J Mol Biol. 1967 Feb 14;23(3):495–521. doi: 10.1016/s0022-2836(67)80121-9. [DOI] [PubMed] [Google Scholar]
  12. Graf L. H., Jr, Burns R. O. The supX-leu-500 mutations and expression of the leucine operon. Mol Gen Genet. 1973 Nov 22;126(4):291–301. doi: 10.1007/BF00269439. [DOI] [PubMed] [Google Scholar]
  13. Hogarth B. G., Higgins C. F. Genetic organization of the oligopeptide permease (opp) locus of Salmonella typhimurium and Escherichia coli. J Bacteriol. 1983 Mar;153(3):1548–1551. doi: 10.1128/jb.153.3.1548-1551.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jagura-Burdzy G., Kredich N. M. Cloning and physical mapping of the cysB region of Salmonella typhimurium. J Bacteriol. 1983 Aug;155(2):578–585. doi: 10.1128/jb.155.2.578-585.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lenny A. B., Margolin P. Locations of the opp and supX genes of Salmonella typhimurium and Escherichia coli. J Bacteriol. 1980 Aug;143(2):747–752. doi: 10.1128/jb.143.2.747-752.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Low K. B. Escherichia coli K-12 F-prime factors, old and new. Bacteriol Rev. 1972 Dec;36(4):587–607. doi: 10.1128/br.36.4.587-607.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MARGOLIN P. Genetic fine structure of the leucine operon in Salmonella. Genetics. 1963 Mar;48:441–457. doi: 10.1093/genetics/48.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Michalka J., Margolin P. Ochre suppression in Salmonella typhimurium. Genetics. 1977 Jun;86(2 Pt 1):237–260. [PMC free article] [PubMed] [Google Scholar]
  19. Mukai F. H., Margolin P. ANALYSIS OF UNLINKED SUPPRESSORS OF AN O degrees MUTATION IN SALMONELLA. Proc Natl Acad Sci U S A. 1963 Jul;50(1):140–148. doi: 10.1073/pnas.50.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Overbye K. M., Basu S. K., Margolin P. Loss of DNA topoisomerase I activity alters many cellular functions in Salmonella typhimurium. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 2):785–791. doi: 10.1101/sqb.1983.047.01.090. [DOI] [PubMed] [Google Scholar]
  21. Overbye K. M., Margolin P. Role of the supX gene in ultraviolet light-induced mutagenesis in Salmonella typhimurium. J Bacteriol. 1981 Apr;146(1):170–178. doi: 10.1128/jb.146.1.170-178.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Raibaud O., Schwartz M. Positive control of transcription initiation in bacteria. Annu Rev Genet. 1984;18:173–206. doi: 10.1146/annurev.ge.18.120184.001133. [DOI] [PubMed] [Google Scholar]
  23. Sancar A., Hack A. M., Rupp W. D. Simple method for identification of plasmid-coded proteins. J Bacteriol. 1979 Jan;137(1):692–693. doi: 10.1128/jb.137.1.692-693.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith G. R. DNA supercoiling: another level for regulating gene expression. Cell. 1981 Jun;24(3):599–600. doi: 10.1016/0092-8674(81)90085-4. [DOI] [PubMed] [Google Scholar]
  25. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  26. Sternglanz R., DiNardo S., Voelkel K. A., Nishimura Y., Hirota Y., Becherer K., Zumstein L., Wang J. C. Mutations in the gene coding for Escherichia coli DNA topoisomerase I affect transcription and transposition. Proc Natl Acad Sci U S A. 1981 May;78(5):2747–2751. doi: 10.1073/pnas.78.5.2747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Trucksis M., Depew R. E. Identification and localization of a gene that specifies production of Escherichia coli DNA topoisomerase I. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2164–2168. doi: 10.1073/pnas.78.4.2164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Trucksis M., Golub E. I., Zabel D. J., Depew R. E. Escherichia coli and Salmonella typhimurium supX genes specify deoxyribonucleic acid topoisomerase I. J Bacteriol. 1981 Aug;147(2):679–681. doi: 10.1128/jb.147.2.679-681.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wang J. C., Becherer K. Cloning of the gene topA encoding for DNA topoisomerase I and the physical mapping of the cysB-topA-trp region of Escherichia coli. Nucleic Acids Res. 1983 Mar 25;11(6):1773–1790. doi: 10.1093/nar/11.6.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wang J. C. Degree of superhelicity of covalently closed cyclic DNA's from Escherichia coli. J Mol Biol. 1969 Jul 28;43(2):263–272. doi: 10.1016/0022-2836(69)90266-6. [DOI] [PubMed] [Google Scholar]
  31. Whitfield H. J., Jr, Martin R. G., Ames B. N. Classification of aminotransferase (C gene) mutants in the histidine operon. J Mol Biol. 1966 Nov 14;21(2):335–355. doi: 10.1016/0022-2836(66)90103-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES