Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Sep;82(17):5585–5587. doi: 10.1073/pnas.82.17.5585

Effect of side chain-backbone electrostatic interactions on the stability of alpha-helices.

H A Scheraga
PMCID: PMC390595  PMID: 3862082

Abstract

An apparent discrepancy between the observed stability of the C-peptide alpha-helix of ribonuclease A and that computed from the Zimm-Bragg parameters sigma and s (obtained by the host-guest technique) is resolved. Side chain-backbone ion-dipole interactions play a role in both systems. However, they are averaged out in the random copolymers used to determine sigma and s for charged residues such as glutamic acid but not in the specific-sequence copolymer, namely, the C-peptide, where they contribute significantly to the helix stability. In considering a specific-sequence alpha-helix, its intrinsic stabilizing free energy (expressed in terms of sigma and s) must be augmented by position-dependent stabilizing long-range electrostatic interactions.

Full text

PDF
5585

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bierzynski A., Kim P. S., Baldwin R. L. A salt bridge stabilizes the helix formed by isolated C-peptide of RNase A. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2470–2474. doi: 10.1073/pnas.79.8.2470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blagdon D. E., Goodman M. Letter: Mechanisms of protein and polypeptide helix initiation. Biopolymers. 1975 Jan;14(1):241–245. doi: 10.1002/bip.1975.360140118. [DOI] [PubMed] [Google Scholar]
  3. Go M., Scheraga H. A. Molecular theory of the helix-coil transition in polyamino acids. V. Explanation of the different conformational behavior of valine, isoleucine, and leucine in aqueous solution. Biopolymers. 1984 Oct;23(10):1961–1977. doi: 10.1002/bip.360231012. [DOI] [PubMed] [Google Scholar]
  4. Hashimoto M., Aritomi J. Studies of poly-beta-benzyl-l-aspartate helix. I. The synthesis and rotatory dispersion of copolymers of beta-p-methyl, chloro, cyano, or nitrobenzyl-l-aspartate with beta-benzyl-l-aspartate. Bull Chem Soc Jpn. 1966 Dec;39(12):2707–2713. doi: 10.1246/bcsj.39.2707. [DOI] [PubMed] [Google Scholar]
  5. Hashimoto M. Studies of poly-beta-benzyl-l-aspartate helix. II. The circular dichroism and optical rotatory dispersion of copolymers of beta-p-methyl, chloro, or cynabenzyl-l-aspartate with beta-benzyl-l-aspartate. Bull Chem Soc Jpn. 1966 Dec;39(12):2713–2720. doi: 10.1246/bcsj.39.2713. [DOI] [PubMed] [Google Scholar]
  6. Ingwall R. T., Scheraga H. A., Lotan N., Berger A., Katchalski E. Conformational studies of poly-L-alanine in water. Biopolymers. 1968;6(3):331–368. doi: 10.1002/bip.1968.360060308. [DOI] [PubMed] [Google Scholar]
  7. Kim P. S., Bierzynski A., Baldwin R. L. A competing salt-bridge suppresses helix formation by the isolated C-peptide carboxylate of ribonuclease A. J Mol Biol. 1982 Nov 25;162(1):187–199. doi: 10.1016/0022-2836(82)90168-1. [DOI] [PubMed] [Google Scholar]
  8. Lewis P. N., Go N., Go M., Kotelchuck D., Scheraga H. A. Helix probability profiles of denatured proteins and their correlation with native structures. Proc Natl Acad Sci U S A. 1970 Apr;65(4):810–815. doi: 10.1073/pnas.65.4.810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lin S. H., Konishi Y., Denton M. E., Scheraga H. A. Influence of an extrinsic cross-link on the folding pathway of ribonuclease A. Conformational and thermodynamic analysis of cross-linked (lysine7-lysine41)-ribonuclease a. Biochemistry. 1984 Nov 6;23(23):5504–5512. doi: 10.1021/bi00318a019. [DOI] [PubMed] [Google Scholar]
  10. Maxfield F. R., Alter J. E., Taylor G. T., Scheraga H. A. Helix-coil stability constants for the naturally occurring amino acids in water. IX. Glutamic acid parameters from random poly(hydroxybutylglutamine-co-L-glutamic acid). Macromolecules. 1975 Jul-Aug;8(4):479–491. doi: 10.1021/ma60046a021. [DOI] [PubMed] [Google Scholar]
  11. Maxfield F. R., Scheraga H. A. The effect of neighboring charges on the helix forming ability of charged amino acids in proteins. Macromolecules. 1975 Jul-Aug;8(4):491–493. doi: 10.1021/ma60046a022. [DOI] [PubMed] [Google Scholar]
  12. Ooi T., Scott R. A., Vanderkooi G., Scheraga H. A. Conformation of analysis of macromolecules. IV. Helical structures of poly-L-alanine, poly-L-valine, poly-beta-methyl-L-aspartate, poly-gamma-methyl-L-glutamate, and poly-L-tyrosine. J Chem Phys. 1967 Jun 1;46(11):4410–4426. doi: 10.1063/1.1840561. [DOI] [PubMed] [Google Scholar]
  13. Shoemaker K. R., Kim P. S., Brems D. N., Marqusee S., York E. J., Chaiken I. M., Stewart J. M., Baldwin R. L. Nature of the charged-group effect on the stability of the C-peptide helix. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2349–2353. doi: 10.1073/pnas.82.8.2349. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES