Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Sep;82(17):5930–5934. doi: 10.1073/pnas.82.17.5930

Enkephalins have a direct positive inotropic effect on cultured cardiac myocytes.

S Laurent, J D Marsh, T W Smith
PMCID: PMC390667  PMID: 2994054

Abstract

Enkephalins have peripheral vascular effects, and enkephalinergic innervation of the heart has been reported. To determine whether enkephalins have direct effects on myocardium, we studied the effects of [D-Ala2, Met5]enkephalinamide and [D-Ala2, D-Leu5]enkephalin on amplitude of contraction (measured with an optical-video system) in spontaneously beating monolayer cultures of chicken embryo ventricular cells, a preparation devoid of intact neural elements. [D-Ala2, Met5]enkephalinamide and [D-Ala2, D-Leu5]enkephalin as well as [Met5]- and [Leu5]enkephalin increased contractility in a concentration-dependent manner. The enkephalin-induced maximal contractile effects were 28% and 30% above control, with EC50 values of 0.53 and 0.17 microM for [D-Ala2, Met5]enkephalinamide and [D-Ala2, D-Leu5]enkephalin, respectively. The positive inotropic effect was antagonized by naloxone but not by propranolol, phentolamine, diphenhydramine, or cimetidine. Naloxone alone had no effect on contractility at a concentration (0.1 microM) that blocked positive inotropic effects of [D-Ala2, Met5]enkephalinamide and [D-Ala2, D-Leu5]enkephalin. To demonstrate the presence of opiate receptors, we studied [3H]naloxone binding in homogenates of cultured chicken embryo ventricular cells. Analysis of binding curves under equilibrium conditions indicated that [3H]naloxone bound specifically to membranes of cultured heart cells with KD = 18.5 +/- 5.4 nM and Bmax = 46.8 +/- 11.7 fmol/mg of protein. We conclude that enkephalins exert a direct positive inotropic effect on cultured heart cells, increasing contractile state via specific opiate receptors.

Full text

PDF
5930

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry W. H., Biedert S., Miura D. S., Smith T. W. Changes in cellular Na+, K+, and Ca2+ contents, monovalent cation transport rate, and contractile state during washout of cardiac glycosides from cultured chick heart cells. Circ Res. 1981 Jul;49(1):141–149. doi: 10.1161/01.res.49.1.141. [DOI] [PubMed] [Google Scholar]
  2. Barry W. H., Smith T. W. Mechanisms of transmembrane calcium movement in cultured chick embryo ventricular cells. J Physiol. 1982 Apr;325:243–260. doi: 10.1113/jphysiol.1982.sp014148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biedert S., Barry W. H., Smith T. W. Inotropic effects and changes in sodium and calcium contents associated with inhibition of monovalent cation active transport by ouabain in cultured myocardial cells. J Gen Physiol. 1979 Oct;74(4):479–494. doi: 10.1085/jgp.74.4.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bitar K. N., Makhlouf G. M. Specific opiate receptors on isolated mammalian gastric smooth muscle cells. Nature. 1982 May 6;297(5861):72–74. doi: 10.1038/297072a0. [DOI] [PubMed] [Google Scholar]
  5. Caffrey J. L., Hodges D. H. Inhibition of the enzymatic degradation of Met-enkephalin by catecholamines. Endocrinology. 1982 Jan;110(1):291–293. doi: 10.1210/endo-110-1-291. [DOI] [PubMed] [Google Scholar]
  6. Clement-Jones V., Lowry P. J., Rees L. H., Besser G. M. Met-enkephalin circulates in human plasma. Nature. 1980 Jan 17;283(5744):295–297. doi: 10.1038/283295a0. [DOI] [PubMed] [Google Scholar]
  7. Down J. A., Szerb J. C. Kinetics of morphine-sensitive [3H]-acetylcholine release from the guinea-pig myenteric plexus. Br J Pharmacol. 1980 Jan;68(1):47–55. doi: 10.1111/j.1476-5381.1980.tb10697.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Galper J. B., Dziekan L. C., O'Hara D. S., Smith T. W. The biphasic response of muscarinic cholinergic receptors in cultured heart cells to agonists. Effects on receptor number and affinity in intact cells and homogenates. J Biol Chem. 1982 Sep 10;257(17):10344–10356. [PubMed] [Google Scholar]
  9. Harden T. K. Agonist-induced desensitization of the beta-adrenergic receptor-linked adenylate cyclase. Pharmacol Rev. 1983 Mar;35(1):5–32. [PubMed] [Google Scholar]
  10. Henderson G., North R. A. Depression by morphine of excitatory junction potentials in the vas deferens of the mouse. Br J Pharmacol. 1976 Jul;57(3):341–346. [PMC free article] [PubMed] [Google Scholar]
  11. Holaday J. W. Cardiovascular effects of endogenous opiate systems. Annu Rev Pharmacol Toxicol. 1983;23:541–594. doi: 10.1146/annurev.pa.23.040183.002545. [DOI] [PubMed] [Google Scholar]
  12. KOSTERLITZ H. W., TAYLOR D. W. The effect of morphine on vagal inhibition of the heart. Br J Pharmacol Chemother. 1959 Jun;14(2):209–214. doi: 10.1111/j.1476-5381.1959.tb01385.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kim D., Marsh J. D., Barry W. H., Smith T. W. Effects of growth in low potassium medium or ouabain on membrane Na,K-ATPase, cation transport, and contractility in cultured chick heart cells. Circ Res. 1984 Jul;55(1):39–48. doi: 10.1161/01.res.55.1.39. [DOI] [PubMed] [Google Scholar]
  14. Kosterlitz H. W., Lord J. A., Paterson S. J., Waterfield A. A. Effects of changes in the structure of enkephalins and of narcotic analgesic drugs on their interactions with mu- and delta-receptors. Br J Pharmacol. 1980 Feb;68(2):333–342. doi: 10.1111/j.1476-5381.1980.tb10422.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lang R. E., Brückner U. B., Hermann K., Kempf B., Rascher W., Sturm V., Unger T., Ganten D. Effect of hemorrhagic shock on the concomitant release of endorphin and enkephalin-like peptides from the pituitary and adrenal gland in the dog. Adv Biochem Psychopharmacol. 1982;33:363–368. [PubMed] [Google Scholar]
  17. Lang R. E., Hermann K., Dietz R., Gaida W., Ganten D., Kraft K., Unger T. Evidence for the presence of enkephalins in the heart. Life Sci. 1983 Jan 24;32(4):399–406. doi: 10.1016/0024-3205(83)90086-3. [DOI] [PubMed] [Google Scholar]
  18. Marsh J. D., Loh E., Lachance D., Barry W. H., Smith T. W. Relationship of binding of a calcium channel blocker to inhibition of contraction in intact cultured embryonic chick ventricular cells. Circ Res. 1983 Oct;53(4):539–543. doi: 10.1161/01.res.53.4.539. [DOI] [PubMed] [Google Scholar]
  19. Marsh J. D., Smith T. W. Receptors for beta-adrenergic agonists in cultured chick ventricular cells. Relationship between agonist binding and physiologic effect. Mol Pharmacol. 1985 Jan;27(1):10–18. [PubMed] [Google Scholar]
  20. Martin W. R. Pharmacology of opioids. Pharmacol Rev. 1983 Dec;35(4):283–323. [PubMed] [Google Scholar]
  21. Miura D. S., Biedert S., Barry W. H. Effects of calcium overload on relaxation in cultured heart cells. J Mol Cell Cardiol. 1981 Nov;13(11):949–961. doi: 10.1016/0022-2828(81)90471-5. [DOI] [PubMed] [Google Scholar]
  22. Moore R. H., 3rd, Dowling D. A. Effects of intravenously administered Leu- or Met-enkephalin on arterial blood pressure. Regul Pept. 1980 Oct;1(2):77–87. doi: 10.1016/0167-0115(80)90012-9. [DOI] [PubMed] [Google Scholar]
  23. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  24. North R. A. Opiates, opioid peptides and single neurones. Life Sci. 1979 Apr 23;24(17):1527–1545. doi: 10.1016/0024-3205(79)90014-6. [DOI] [PubMed] [Google Scholar]
  25. Ruth J. A., Cuizon J. V., Eiden L. E. Leucine-enkephalin increases norepinephrine-stimulated chronotropy and 45Ca++ uptake in guinea-pig atria. Neuropeptides. 1984 May;4(3):185–191. doi: 10.1016/0143-4179(84)90099-4. [DOI] [PubMed] [Google Scholar]
  26. Simantov Rabi, Childers S. R., Snyder S. H. (3H) Opiate binding: anomalous properties in kidney and liver membranes. Mol Pharmacol. 1978 Jan;14(1):69–76. [PubMed] [Google Scholar]
  27. Strauer B. E. Contractile responses to morphine, piritramide, meperidine, and fentanyl: a comparative study of effects on the isolated ventricular myocardium. Anesthesiology. 1972 Sep;37(3):304–310. doi: 10.1097/00000542-197209000-00006. [DOI] [PubMed] [Google Scholar]
  28. Tanz R. D., Guntheroth W. G. Response of mammalian cardiac muscle to certain sympathomimetics in presence of morphine. Proc Soc Exp Biol Med. 1966 Jul;122(3):754–758. doi: 10.3181/00379727-122-31244. [DOI] [PubMed] [Google Scholar]
  29. Vasko J. S., Henney R. P., Brawley R. K., Oldham H. N., Morrow A. G. Effects of morphine on ventricular function and myocardial contractile force. Am J Physiol. 1966 Feb;210(2):329–334. doi: 10.1152/ajplegacy.1966.210.2.329. [DOI] [PubMed] [Google Scholar]
  30. Vatner S. F., Marsh J. D., Swain J. A. Effects of morphine on coronary and left ventricular dynamics in conscious dogs. J Clin Invest. 1975 Feb;55(2):207–217. doi: 10.1172/JCI107923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Waterfield A. A., Smokcum R. W., Hughes J., Kosterlitz H. W., Henderson G. In vitro pharmacology of the opioid peptides, enkephalins and endorphins. Eur J Pharmacol. 1977 May 15;43(2):107–116. doi: 10.1016/0014-2999(77)90123-6. [DOI] [PubMed] [Google Scholar]
  32. Weihe E., McKnight A. T., Corbett A. D., Hartschuh W., Reinecke M., Kosterlitz H. W. Characterization of opioid peptides in guinea-pig heart and skin. Life Sci. 1983;33 (Suppl 1):711–714. doi: 10.1016/0024-3205(83)90601-x. [DOI] [PubMed] [Google Scholar]
  33. Wood P. L., Charleson S. E., Lane D., Hudgin R. L. Multiple opiate receptors: differential binding of mu, kappa and delta agonists. Neuropharmacology. 1981 Dec;20(12A):1215–1220. doi: 10.1016/0028-3908(81)90067-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES