Abstract
We have sequenced DNA clones corresponding to the entire coding and 5' untranslated regions and almost all of the 3' untranslated region of a silkmoth chorion RNA which is expressed largely in a subpopulation of follicular epithelial cells (aeropyle crown region). This RNA encodes the E1 protein, one of two components of the prominent "filler" that helps mold the shape of aeropyle crowns. The conceptually translated E1 sequence reveals an alternation in hydrophobic and hydrophilic stretches of amino acids that correlates with certain predictions about its secondary structure. E1 is unusual in revealing no sequence homology with other known chorion sequences and in having an unusually long 3' untranslated region. Sequence analysis of the 5' end of the E1 gene has identified an intron near the end of the signal peptide-encoding region, a feature shared with other chorion genes.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Breathnach R., Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. doi: 10.1146/annurev.bi.50.070181.002025. [DOI] [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Prediction of beta-turns. Biophys J. 1979 Jun;26(3):367–383. doi: 10.1016/S0006-3495(79)85259-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
- Fitzgerald M., Shenk T. The sequence 5'-AAUAAA-3'forms parts of the recognition site for polyadenylation of late SV40 mRNAs. Cell. 1981 Apr;24(1):251–260. doi: 10.1016/0092-8674(81)90521-3. [DOI] [PubMed] [Google Scholar]
- Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
- Goldsmith M. R., Kafatos F. C. Developmentally regulated genes in silkmoths. Annu Rev Genet. 1984;18:443–487. doi: 10.1146/annurev.ge.18.120184.002303. [DOI] [PubMed] [Google Scholar]
- Hamodrakas S. J., Asher S. A., Mazur G. D., Regier J. C., Kafatos F. C. Laser Raman studies of protein conformation in the silkmoth chorion. Biochim Biophys Acta. 1982 May 3;703(2):216–222. doi: 10.1016/0167-4838(82)90051-6. [DOI] [PubMed] [Google Scholar]
- Iatrou K., Tsitilou S. G. Coordinately expressed chorion genes of Bombyx mori: is developmental specificity determined by secondary structure recognition? EMBO J. 1983;2(9):1431–1440. doi: 10.1002/j.1460-2075.1983.tb01604.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iatrou K., Tsitilou S. G., Kafatos F. C. DNA sequence transfer between two high-cysteine chorion gene families in the silkmoth Bombyx mori. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4452–4456. doi: 10.1073/pnas.81.14.4452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones C. W., Kafatos F. C. Accepted mutations in a gene family: evolutionary diversification of duplicated DNA. J Mol Evol. 1982;19(1):87–103. doi: 10.1007/BF02100227. [DOI] [PubMed] [Google Scholar]
- Jones C. W., Kafatos F. C. Structure, organization and evolution of developmentally regulated chorion genes in a silkmoth. Cell. 1980 Dec;22(3):855–867. doi: 10.1016/0092-8674(80)90562-0. [DOI] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Lecanidou R., Eickbush T. H., Rodakis G. C., Kafatos F. C. Novel B family sequence from an early chorion cDNA library of Bombyx mori. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1955–1959. doi: 10.1073/pnas.80.7.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
- Mazur G. D., Regier J. C., Kafatos F. C. The silkmoth chorion: morphogenesis of surface structures and its relation to synthesis of specific proteins. Dev Biol. 1980 May;76(2):305–321. doi: 10.1016/0012-1606(80)90381-4. [DOI] [PubMed] [Google Scholar]
- Messing J., Vieira J. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene. 1982 Oct;19(3):269–276. doi: 10.1016/0378-1119(82)90016-6. [DOI] [PubMed] [Google Scholar]
- Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okamoto H., Ishikawa E., Suzuki Y. Structural analysis of sericin genes. Homologies with fibroin gene in the 5' flanking nucleotide sequences. J Biol Chem. 1982 Dec 25;257(24):15192–15199. [PubMed] [Google Scholar]
- Paul M., Kafaots F. C. Specific protein synthesis in cellular differentiation. II. The program of protein synthetic changes during chorion formation by slikmoth follicles, and its implementation in organ culture. Dev Biol. 1975 Jan;42(1):141–159. doi: 10.1016/0012-1606(75)90320-6. [DOI] [PubMed] [Google Scholar]
- Pustell J., Kafatos F. C. A high speed, high capacity homology matrix: zooming through SV40 and polyoma. Nucleic Acids Res. 1982 Aug 11;10(15):4765–4782. doi: 10.1093/nar/10.15.4765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Regier J. C., Hatzopoulos A. K., Durot A. C. Molecular cloning of region-specific chorion-encoding RNA sequences. Proc Natl Acad Sci U S A. 1984 May;81(9):2796–2800. doi: 10.1073/pnas.81.9.2796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Regier J. C., Kafatos F. C., Hamodrakas S. J. Silkmoth chorion multigene families constitute a superfamily: comparison of C and B family sequences. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1043–1047. doi: 10.1073/pnas.80.4.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Regier J. C., Kafatos F. C. In vivo kinetics of pyrrolidonecarboxylic acid formation in selected silkmoth chorion proteins. J Biol Chem. 1981 Jun 25;256(12):6444–6451. [PubMed] [Google Scholar]
- Regier J. C., Mazur G. D., Kafatos F. C., Paul M. Morphogenesis of silkmoth chorion: initial framework formation and its relation to synthesis of specific proteins. Dev Biol. 1982 Jul;92(1):159–174. doi: 10.1016/0012-1606(82)90160-9. [DOI] [PubMed] [Google Scholar]
- Regier J. C., Mazur G. D., Kafatos F. C. The silkmoth chorion: morphological and biochemical characterization of four surface regions. Dev Biol. 1980 May;76(2):286–304. doi: 10.1016/0012-1606(80)90380-2. [DOI] [PubMed] [Google Scholar]
- Sures I., Levy S., Kedes L. H. Leader sequences of Strongylocentrotus purpuratus histone mRNAs start at a unique heptanucleotide common to all five histone genes. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1265–1269. doi: 10.1073/pnas.77.3.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thireos G., Kafatos F. C. Cell-free translation of silkmoth chorion mRNAs: identification of protein precursors and characterization of cloned DNAs by hybrid-selected translation. Dev Biol. 1980 Jul;78(1):36–46. doi: 10.1016/0012-1606(80)90316-4. [DOI] [PubMed] [Google Scholar]
- Tsujimoto Y., Suzuki Y. The DNA sequence of Bombyx mori fibroin gene including the 5' flanking, mRNA coding, entire intervening and fibroin protein coding regions. Cell. 1979 Oct;18(2):591–600. doi: 10.1016/0092-8674(79)90075-8. [DOI] [PubMed] [Google Scholar]
- von Heijne G. How signal sequences maintain cleavage specificity. J Mol Biol. 1984 Feb 25;173(2):243–251. doi: 10.1016/0022-2836(84)90192-x. [DOI] [PubMed] [Google Scholar]
