Abstract
A large number of functions have been demonstrated for tenascin-C by antibody perturbation assays and in vitro cell culture experiments. However, these results contrast sharply with the lack of any apparent phenotype in mice with a genetic deletion of tenascin-C. A possible explanation for the lack of phenotype would be expression of some altered but functional tenascin-C in the mutant. We report the generation of an independent tenascin-C null mouse and conclude that the original tenascin-C knockout, which is genetically very similar to ours, is also a true null. As found previously, the absence of tenascin-C has no influence on development, adulthood, life span, and fecundity. We have studied in detail two models of wound healing. After axotomy, the regeneration of the sciatic nerve is not altered without tenascin-C. During healing of cutaneous wounds, deposition of collagen I, fibulin-2, and nidogen is identical in mutant and wild-type mice. In contrast. fibronectin appears diminished in wounds of tenascin-C-deficient mice. However, the lack of tenascin-C together with the reduced amount of fibronectin has no influence on the quality of the healing process.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brandon E. P., Idzerda R. L., McKnight G. S. Knockouts. Targeting the mouse genome: a compendium of knockouts (Part I) Curr Biol. 1995 Jun 1;5(6):625–634. doi: 10.1016/s0960-9822(95)00127-8. [DOI] [PubMed] [Google Scholar]
- Brandon E. P., Idzerda R. L., McKnight G. S. Targeting the mouse genome: a compendium of knockouts (Part II) Curr Biol. 1995 Jul 1;5(7):758–765. doi: 10.1016/s0960-9822(95)00152-7. [DOI] [PubMed] [Google Scholar]
- Brandon E. P., Idzerda R. L., McKnight G. S. Targeting the mouse genome: a compendium of knockouts (Part III) Curr Biol. 1995 Aug 1;5(8):873–881. doi: 10.1016/s0960-9822(95)00177-1. [DOI] [PubMed] [Google Scholar]
- Chiquet-Ehrismann R., Mackie E. J., Pearson C. A., Sakakura T. Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell. 1986 Oct 10;47(1):131–139. doi: 10.1016/0092-8674(86)90374-0. [DOI] [PubMed] [Google Scholar]
- Chiquet-Ehrismann R. Tenascins, a growing family of extracellular matrix proteins. Experientia. 1995 Sep 29;51(9-10):853–862. doi: 10.1007/BF01921736. [DOI] [PubMed] [Google Scholar]
- Chung C. Y., Zardi L., Erickson H. P. Binding of tenascin-C to soluble fibronectin and matrix fibrils. J Biol Chem. 1995 Dec 1;270(48):29012–29017. doi: 10.1074/jbc.270.48.29012. [DOI] [PubMed] [Google Scholar]
- Crossin K. L., Hoffman S., Tan S. S., Edelman G. M. Cytotactin and its proteoglycan ligand mark structural and functional boundaries in somatosensory cortex of the early postnatal mouse. Dev Biol. 1989 Dec;136(2):381–392. doi: 10.1016/0012-1606(89)90264-9. [DOI] [PubMed] [Google Scholar]
- Daniloff J. K., Crossin K. L., Pinçon-Raymond M., Murawsky M., Rieger F., Edelman G. M. Expression of cytotactin in the normal and regenerating neuromuscular system. J Cell Biol. 1989 Feb;108(2):625–635. doi: 10.1083/jcb.108.2.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dörries U., Taylor J., Xiao Z., Lochter A., Montag D., Schachner M. Distinct effects of recombinant tenascin-C domains on neuronal cell adhesion, growth cone guidance, and neuronal polarity. J Neurosci Res. 1996 Feb 15;43(4):420–438. doi: 10.1002/(SICI)1097-4547(19960215)43:4<420::AID-JNR4>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
- Erickson H. P. Gene knockouts of c-src, transforming growth factor beta 1, and tenascin suggest superfluous, nonfunctional expression of proteins. J Cell Biol. 1993 Mar;120(5):1079–1081. doi: 10.1083/jcb.120.5.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erickson H. P. Tenascin-C, tenascin-R and tenascin-X: a family of talented proteins in search of functions. Curr Opin Cell Biol. 1993 Oct;5(5):869–876. doi: 10.1016/0955-0674(93)90037-q. [DOI] [PubMed] [Google Scholar]
- Fässler R., Meyer M. Consequences of lack of beta 1 integrin gene expression in mice. Genes Dev. 1995 Aug 1;9(15):1896–1908. doi: 10.1101/gad.9.15.1896. [DOI] [PubMed] [Google Scholar]
- Fässler R., Sasaki T., Timpl R., Chu M. L., Werner S. Differential regulation of fibulin, tenascin-C, and nidogen expression during wound healing of normal and glucocorticoid-treated mice. Exp Cell Res. 1996 Jan 10;222(1):111–116. doi: 10.1006/excr.1996.0014. [DOI] [PubMed] [Google Scholar]
- Johansson S., Hök M. Substrate adhesion of rat hepatocytes: on the mechanism of attachment to fibronectin. J Cell Biol. 1984 Mar;98(3):810–817. doi: 10.1083/jcb.98.3.810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langenfeld-Oster B., Faissner A., Irintchev A., Wernig A. Polyclonal antibodies against NCAM and tenascin delay endplate reinnervation. J Neurocytol. 1994 Oct;23(10):591–604. doi: 10.1007/BF01191554. [DOI] [PubMed] [Google Scholar]
- Mackie E. J., Halfter W., Liverani D. Induction of tenascin in healing wounds. J Cell Biol. 1988 Dec;107(6 Pt 2):2757–2767. doi: 10.1083/jcb.107.6.2757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackie E. J., Thesleff I., Chiquet-Ehrismann R. Tenascin is associated with chondrogenic and osteogenic differentiation in vivo and promotes chondrogenesis in vitro. J Cell Biol. 1987 Dec;105(6 Pt 1):2569–2579. doi: 10.1083/jcb.105.6.2569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitrovic N., Schachner M. Detection of tenascin-C in the nervous system of the tenascin-C mutant mouse. J Neurosci Res. 1995 Dec;42(5):710–717. doi: 10.1002/jnr.490420514. [DOI] [PubMed] [Google Scholar]
- Mège R. M., Nicolet M., Pinçon-Raymond M., Murawsky M., Rieger F. Cytotactin is involved in synaptogenesis during regeneration of the frog neuromuscular system. Dev Biol. 1992 Feb;149(2):381–394. doi: 10.1016/0012-1606(92)90293-p. [DOI] [PubMed] [Google Scholar]
- Saga Y., Yagi T., Ikawa Y., Sakakura T., Aizawa S. Mice develop normally without tenascin. Genes Dev. 1992 Oct;6(10):1821–1831. doi: 10.1101/gad.6.10.1821. [DOI] [PubMed] [Google Scholar]
- Sanes J. R., Schachner M., Covault J. Expression of several adhesive macromolecules (N-CAM, L1, J1, NILE, uvomorulin, laminin, fibronectin, and a heparan sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscle. J Cell Biol. 1986 Feb;102(2):420–431. doi: 10.1083/jcb.102.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steindler D. A., Settles D., Erickson H. P., Laywell E. D., Yoshiki A., Faissner A., Kusakabe M. Tenascin knockout mice: barrels, boundary molecules, and glial scars. J Neurosci. 1995 Mar;15(3 Pt 1):1971–1983. doi: 10.1523/JNEUROSCI.15-03-01971.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Svensson M., Aldskogius H. Regeneration of hypoglossal nerve axons following blockade of the axotomy-induced microglial cell reaction in the rat. Eur J Neurosci. 1993 Jan 1;5(1):85–94. doi: 10.1111/j.1460-9568.1993.tb00208.x. [DOI] [PubMed] [Google Scholar]
- Tan S. S., Crossin K. L., Hoffman S., Edelman G. M. Asymmetric expression in somites of cytotactin and its proteoglycan ligand is correlated with neural crest cell distribution. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7977–7981. doi: 10.1073/pnas.84.22.7977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor J., Pesheva P., Schachner M. Influence of janusin and tenascin on growth cone behavior in vitro. J Neurosci Res. 1993 Jul 1;35(4):347–362. doi: 10.1002/jnr.490350402. [DOI] [PubMed] [Google Scholar]
- Thesleff I., Mackie E., Vainio S., Chiquet-Ehrismann R. Changes in the distribution of tenascin during tooth development. Development. 1987 Oct;101(2):289–296. doi: 10.1242/dev.101.2.289. [DOI] [PubMed] [Google Scholar]
- Weller A., Beck S., Ekblom P. Amino acid sequence of mouse tenascin and differential expression of two tenascin isoforms during embryogenesis. J Cell Biol. 1991 Jan;112(2):355–362. doi: 10.1083/jcb.112.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]