Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Oct;82(19):6423–6426. doi: 10.1073/pnas.82.19.6423

Crystallographic structure of an active, sequence-engineered ribonuclease.

H C Taylor, A Komoriya, I M Chaiken
PMCID: PMC390728  PMID: 3863103

Abstract

X-ray diffraction methods were used to test a synthetic-modeling approach to the sequence engineering of bovine pancreatic ribonuclease. A model of RNase S-peptide (residues 1-20), having a simplified amino acid sequence but retaining elements deduced to be essential for conformation and function, was previously synthesized and found to form a catalytically active and stable complex with native S-protein (residues 21-24). We have now obtained a 3-A-resolution electron density map of this semisynthetic complex which reveals that the conformation of model peptide closely mimics that of native S-peptide, as intended by sequence design. Some small differences from the native structure are observed: Glu-2 and Arg-10 of the model complex are not close enough to form a salt bridge, the position of the His-12 imidazole ring is slightly shifted in the active site, and the peptide's amino terminus is reoriented. Nonetheless, the major structural features predicted to be essential by computer-aided peptide-design analysis are preserved in the model peptide portion of the complex. These include (i) the alpha-helical framework involving residues 3-13, (ii) the catalytically competent orientation of His-12, and (iii) complex-stabilizing non-bonding interactions involving Phe-8 and Met-13 of S-peptide and hydrophobic residues in the cleft region of S-protein. Further, sequence simplification has not introduced any non-native, potentially stabilizing contacts between the model peptide and S-protein. The results emphasize the usefulness, in redesigning native proteins, of categorizing sequence into residues providing conformational framework and those determining intra-and intermolecular surface recognition.

Full text

PDF
6423

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anfinsen C. B., Scheraga H. A. Experimental and theoretical aspects of protein folding. Adv Protein Chem. 1975;29:205–300. doi: 10.1016/s0065-3233(08)60413-1. [DOI] [PubMed] [Google Scholar]
  2. Chaiken I. M. Semisynthetic peptides and proteins. CRC Crit Rev Biochem. 1981;11(3):255–301. doi: 10.3109/10409238109108703. [DOI] [PubMed] [Google Scholar]
  3. Chaiken I. M., Taylor H. C., Ammon H. L. Crystal properties of (des 16-20) semisynthetic sequence variants of ribonuclease S'. J Biol Chem. 1977 Aug 25;252(16):5599–5601. [PubMed] [Google Scholar]
  4. Connolly M. L. Solvent-accessible surfaces of proteins and nucleic acids. Science. 1983 Aug 19;221(4612):709–713. doi: 10.1126/science.6879170. [DOI] [PubMed] [Google Scholar]
  5. Dunn B. M., Chaiken I. M. Relationship between alpha-helical propensity and formation of the ribonuclease-S complex. J Mol Biol. 1975 Jul 15;95(4):497–511. doi: 10.1016/0022-2836(75)90313-7. [DOI] [PubMed] [Google Scholar]
  6. Dunn B. M., DiBello C., Kirk K. L., Cohen L. A., Chaiken I. M. Synthesis, purification, and properties of a semisynthetic ribonuclease S incorporating 4-fluoro-L-histidine at position 12. J Biol Chem. 1974 Oct 10;249(19):6295–6301. [PubMed] [Google Scholar]
  7. Kanmera T., Homandberg G. A., Komoriya A., Chaiken I. M. Minimum information content and formation of interacting ribonuclease fragment complexes. Int J Pept Protein Res. 1983 Jan;21(1):74–83. doi: 10.1111/j.1399-3011.1983.tb03080.x. [DOI] [PubMed] [Google Scholar]
  8. Komoriya A., Chaiken I. M. Sequence modeling using semisynthetic ribonuclease S. J Biol Chem. 1982 Mar 10;257(5):2599–2604. [PubMed] [Google Scholar]
  9. Krigbaum W. R., Komoriya A. Local interactions as a structure determinant for protein molecules: III. Biochim Biophys Acta. 1979 Jan 25;576(1):229–246. doi: 10.1016/0005-2795(79)90499-9. [DOI] [PubMed] [Google Scholar]
  10. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  11. Pandin M., Padlan E. A., DiBello C., Chaiken I. M. Crystalline semisynthetic ribonuclease-S'. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1844–1847. doi: 10.1073/pnas.73.6.1844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. RICHARDS F. M., VITHAYATHIL P. J. The preparation of subtilisn-modified ribonuclease and the separation of the peptide and protein components. J Biol Chem. 1959 Jun;234(6):1459–1465. [PubMed] [Google Scholar]
  13. Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
  14. Shoemaker K. R., Kim P. S., Brems D. N., Marqusee S., York E. J., Chaiken I. M., Stewart J. M., Baldwin R. L. Nature of the charged-group effect on the stability of the C-peptide helix. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2349–2353. doi: 10.1073/pnas.82.8.2349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shortle D., DiMaio D., Nathans D. Directed mutagenesis. Annu Rev Genet. 1981;15:265–294. doi: 10.1146/annurev.ge.15.120181.001405. [DOI] [PubMed] [Google Scholar]
  16. Taylor H. C., Richardson D. C., Richardson J. S., Wlodawer A., Komoriya A., Chaikes I. M. "Active" conformation of an inactive semi-synthetic ribonuclease-S. J Mol Biol. 1981 Jun 25;149(2):313–317. doi: 10.1016/0022-2836(81)90305-3. [DOI] [PubMed] [Google Scholar]
  17. Wyckoff H. W., Tsernoglou D., Hanson A. W., Knox J. R., Lee B., Richards F. M. The three-dimensional structure of ribonuclease-S. Interpretation of an electron density map at a nominal resolution of 2 A. J Biol Chem. 1970 Jan 25;245(2):305–328. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES