Abstract
X-ray diffraction methods were used to test a synthetic-modeling approach to the sequence engineering of bovine pancreatic ribonuclease. A model of RNase S-peptide (residues 1-20), having a simplified amino acid sequence but retaining elements deduced to be essential for conformation and function, was previously synthesized and found to form a catalytically active and stable complex with native S-protein (residues 21-24). We have now obtained a 3-A-resolution electron density map of this semisynthetic complex which reveals that the conformation of model peptide closely mimics that of native S-peptide, as intended by sequence design. Some small differences from the native structure are observed: Glu-2 and Arg-10 of the model complex are not close enough to form a salt bridge, the position of the His-12 imidazole ring is slightly shifted in the active site, and the peptide's amino terminus is reoriented. Nonetheless, the major structural features predicted to be essential by computer-aided peptide-design analysis are preserved in the model peptide portion of the complex. These include (i) the alpha-helical framework involving residues 3-13, (ii) the catalytically competent orientation of His-12, and (iii) complex-stabilizing non-bonding interactions involving Phe-8 and Met-13 of S-peptide and hydrophobic residues in the cleft region of S-protein. Further, sequence simplification has not introduced any non-native, potentially stabilizing contacts between the model peptide and S-protein. The results emphasize the usefulness, in redesigning native proteins, of categorizing sequence into residues providing conformational framework and those determining intra-and intermolecular surface recognition.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anfinsen C. B., Scheraga H. A. Experimental and theoretical aspects of protein folding. Adv Protein Chem. 1975;29:205–300. doi: 10.1016/s0065-3233(08)60413-1. [DOI] [PubMed] [Google Scholar]
- Chaiken I. M. Semisynthetic peptides and proteins. CRC Crit Rev Biochem. 1981;11(3):255–301. doi: 10.3109/10409238109108703. [DOI] [PubMed] [Google Scholar]
- Chaiken I. M., Taylor H. C., Ammon H. L. Crystal properties of (des 16-20) semisynthetic sequence variants of ribonuclease S'. J Biol Chem. 1977 Aug 25;252(16):5599–5601. [PubMed] [Google Scholar]
- Connolly M. L. Solvent-accessible surfaces of proteins and nucleic acids. Science. 1983 Aug 19;221(4612):709–713. doi: 10.1126/science.6879170. [DOI] [PubMed] [Google Scholar]
- Dunn B. M., Chaiken I. M. Relationship between alpha-helical propensity and formation of the ribonuclease-S complex. J Mol Biol. 1975 Jul 15;95(4):497–511. doi: 10.1016/0022-2836(75)90313-7. [DOI] [PubMed] [Google Scholar]
- Dunn B. M., DiBello C., Kirk K. L., Cohen L. A., Chaiken I. M. Synthesis, purification, and properties of a semisynthetic ribonuclease S incorporating 4-fluoro-L-histidine at position 12. J Biol Chem. 1974 Oct 10;249(19):6295–6301. [PubMed] [Google Scholar]
- Kanmera T., Homandberg G. A., Komoriya A., Chaiken I. M. Minimum information content and formation of interacting ribonuclease fragment complexes. Int J Pept Protein Res. 1983 Jan;21(1):74–83. doi: 10.1111/j.1399-3011.1983.tb03080.x. [DOI] [PubMed] [Google Scholar]
- Komoriya A., Chaiken I. M. Sequence modeling using semisynthetic ribonuclease S. J Biol Chem. 1982 Mar 10;257(5):2599–2604. [PubMed] [Google Scholar]
- Krigbaum W. R., Komoriya A. Local interactions as a structure determinant for protein molecules: III. Biochim Biophys Acta. 1979 Jan 25;576(1):229–246. doi: 10.1016/0005-2795(79)90499-9. [DOI] [PubMed] [Google Scholar]
- Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
- Pandin M., Padlan E. A., DiBello C., Chaiken I. M. Crystalline semisynthetic ribonuclease-S'. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1844–1847. doi: 10.1073/pnas.73.6.1844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RICHARDS F. M., VITHAYATHIL P. J. The preparation of subtilisn-modified ribonuclease and the separation of the peptide and protein components. J Biol Chem. 1959 Jun;234(6):1459–1465. [PubMed] [Google Scholar]
- Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
- Shoemaker K. R., Kim P. S., Brems D. N., Marqusee S., York E. J., Chaiken I. M., Stewart J. M., Baldwin R. L. Nature of the charged-group effect on the stability of the C-peptide helix. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2349–2353. doi: 10.1073/pnas.82.8.2349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shortle D., DiMaio D., Nathans D. Directed mutagenesis. Annu Rev Genet. 1981;15:265–294. doi: 10.1146/annurev.ge.15.120181.001405. [DOI] [PubMed] [Google Scholar]
- Taylor H. C., Richardson D. C., Richardson J. S., Wlodawer A., Komoriya A., Chaikes I. M. "Active" conformation of an inactive semi-synthetic ribonuclease-S. J Mol Biol. 1981 Jun 25;149(2):313–317. doi: 10.1016/0022-2836(81)90305-3. [DOI] [PubMed] [Google Scholar]
- Wyckoff H. W., Tsernoglou D., Hanson A. W., Knox J. R., Lee B., Richards F. M. The three-dimensional structure of ribonuclease-S. Interpretation of an electron density map at a nominal resolution of 2 A. J Biol Chem. 1970 Jan 25;245(2):305–328. [PubMed] [Google Scholar]





