Abstract
Incubation of chicken embryo fibroblasts with mitogenic concentrations of insulin for 24 hr or with the tumor promoter phorbol 12-myristate 13-acetate for 6 hr stimulated lactate release and 3-O-methylglucose uptake. Insulin also increased the Vmax of 6-phosphofructo-1-kinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11). Both agents increased the concentration of fructose 2,6-bisphosphate and the activity of 6-phosphofructo-2-kinase (EC 2.7.1.-), the enzyme that catalyzes the synthesis of this stimulator of 6-phosphofructo-1-kinase. These changes provide an explanation for the stimulation of glycolysis by insulin and phorbol esters. In contrast to the situation in rat liver, fructose 2,6-bisphosphate concentration did not decrease after cyclic AMP treatment. Incubation of cells with phorbol ester analogues or with glycerol derivatives that are known to stimulate, or to bind to, protein kinase C did increase the concentration of fructose 2,6-bisphosphate, suggesting that the stimulation of 6-phosphofructo-2-kinase by phorbol 12-myristate 13-acetate is mediated by protein kinase C.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Bruni P., Farnararo M., Vasta V., D'Alessandro A. Increase of the glycolytic rate in human resting fibroblasts following serum stimulation. The possible role of the fructose-2,6-bisphosphate. FEBS Lett. 1983 Aug 8;159(1-2):39–42. doi: 10.1016/0014-5793(83)80412-8. [DOI] [PubMed] [Google Scholar]
- Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
- Claus T. H., El-Maghrabi M. R., Regen D. M., Stewart H. B., McGrane M., Kountz P. D., Nyfeler F., Pilkis J., Pilkis S. J. The role of fructose 2,6-bisphosphate in the regulation of carbohydrate metabolism. Curr Top Cell Regul. 1984;23:57–86. doi: 10.1016/b978-0-12-152823-2.50006-4. [DOI] [PubMed] [Google Scholar]
- De Meyts P., Van Obberghen E., Roth J. Mapping of the residues responsible for the negative cooperativity of the receptor-binding region of insulin. Nature. 1978 Jun 15;273(5663):504–509. doi: 10.1038/273504a0. [DOI] [PubMed] [Google Scholar]
- Diamond I., Legg A., Schneider J. A., Rozengurt E. Glycolysis in quiescent cultures of 3T3 cells. Stimulation by serum, epidermal growth factor, and insulin in intact cells and persistence of the stimulation after cell homogenization. J Biol Chem. 1978 Feb 10;253(3):866–871. [PubMed] [Google Scholar]
- Driedger P. E., Blumberg P. M. The effect of phorbol diesters on chicken embryo fibroblasts. Cancer Res. 1977 Sep;37(9):3257–3265. [PubMed] [Google Scholar]
- Farnararo M., Vasta V., Bruni P., D'Alessandro A. The effect of insulin on Fru-2,6-P2 levels in human fibroblasts. FEBS Lett. 1984 Jun 4;171(1):117–120. doi: 10.1016/0014-5793(84)80470-6. [DOI] [PubMed] [Google Scholar]
- Garrison J. C., Johnsen D. E., Campanile C. P. Evidence for the role of phosphorylase kinase, protein kinase C, and other Ca2+-sensitive protein kinases in the response of hepatocytes to angiotensin II and vasopressin. J Biol Chem. 1984 Mar 10;259(5):3283–3292. [PubMed] [Google Scholar]
- Gilmore T., Martin G. S. Phorbol ester and diacylglycerol induce protein phosphorylation at tyrosine. Nature. 1983 Dec 1;306(5942):487–490. doi: 10.1038/306487a0. [DOI] [PubMed] [Google Scholar]
- Hartmann C., Golde A., Villaudy J., Park I., Vernet G., Krsmanovic V. Study of pp60v-src protein kinase activity in synchronized chicken embryo fibroblasts infected with Rous sarcoma virus. Exp Cell Res. 1984 Jan;150(1):242–249. doi: 10.1016/0014-4827(84)90719-5. [DOI] [PubMed] [Google Scholar]
- Hers H. G., Hue L. Gluconeogenesis and related aspects of glycolysis. Annu Rev Biochem. 1983;52:617–653. doi: 10.1146/annurev.bi.52.070183.003153. [DOI] [PubMed] [Google Scholar]
- Hue L., Blackmore P. F., Shikama H., Robinson-Steiner A., Exton J. H. Regulation of fructose-2,6-bisphosphate content in rat hepatocytes, perfused hearts, and perfused hindlimbs. J Biol Chem. 1982 Apr 25;257(8):4308–4313. [PubMed] [Google Scholar]
- Hue L., Sobrino F., Bosca L. Difference in glucose sensitivity of liver glycolysis and glycogen synthesis. Relationship between lactate production and fructose 2,6-bisphosphate concentration. Biochem J. 1984 Dec 15;224(3):779–786. doi: 10.1042/bj2240779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter E. Biological techniques for avian sarcoma viruses. Methods Enzymol. 1979;58:379–393. doi: 10.1016/s0076-6879(79)58153-1. [DOI] [PubMed] [Google Scholar]
- King G. L., Kahn C. R., Rechler M. M., Nissley S. P. Direct demonstration of separate receptors for growth and metabolic activities of insulin and multiplication-stimulating activity (an insulinlike growth factor) using antibodies to the insulin receptor. J Clin Invest. 1980 Jul;66(1):130–140. doi: 10.1172/JCI109826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minatogawa Y., Hue L. Fructose 2,6-bisphosphate in rat skeletal muscle during contraction. Biochem J. 1984 Oct 1;223(1):73–79. doi: 10.1042/bj2230073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Méchali M., Méchali F., Laskey R. A. Tumor promoter TPA increases initiation of replication on DNA injected into xenopus eggs. Cell. 1983 Nov;35(1):63–69. doi: 10.1016/0092-8674(83)90208-8. [DOI] [PubMed] [Google Scholar]
- Naka M., Nishikawa M., Adelstein R. S., Hidaka H. Phorbol ester-induced activation of human platelets is associated with protein kinase C phosphorylation of myosin light chains. Nature. 1983 Dec 1;306(5942):490–492. doi: 10.1038/306490a0. [DOI] [PubMed] [Google Scholar]
- Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
- O'Brien T. G. Hexose transport in undifferentiated and differentiated BALB/c 3T3 preadipose cells: effects 12-O-tetradecanoylphorbol-13-acetate and insulin. J Cell Physiol. 1982 Jan;110(1):63–71. doi: 10.1002/jcp.1041100111. [DOI] [PubMed] [Google Scholar]
- O'Brien T. G., Saladik D., Diamond L. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate stimulates lactate production in BALB/c 3T3 preadipose cells. Biochem Biophys Res Commun. 1979 May 14;88(1):103–110. doi: 10.1016/0006-291x(79)91702-9. [DOI] [PubMed] [Google Scholar]
- Rechler M. M., Podskalny J. M., Nissley S. P. Characterization of the binding of multiplication-stimulating activity to a receptor for growth polypeptides in chick embryo fibroblasts. J Biol Chem. 1977 Jun 10;252(11):3898–3910. [PubMed] [Google Scholar]
- Rider M. H., Hue L. Activation of rat heart phosphofructokinase-2 by insulin in vivo. FEBS Lett. 1984 Oct 29;176(2):484–488. doi: 10.1016/0014-5793(84)81223-5. [DOI] [PubMed] [Google Scholar]
- Rider M. H., Hue L. Regulation of fructose 2,6-bisphosphate concentration in white adipose tissue. Biochem J. 1985 Jan 15;225(2):421–428. doi: 10.1042/bj2250421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rozengurt E., Rodriguez-Pena A., Coombs M., Sinnett-Smith J. Diacylglycerol stimulates DNA synthesis and cell division in mouse 3T3 cells: role of Ca2+-sensitive phospholipid-dependent protein kinase. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5748–5752. doi: 10.1073/pnas.81.18.5748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schamhart D. H., van de Poll K. W., van Wijk R. Comparative studies of glucose metabolism in HTC, RLC, MH1C1, and Reuber H35 rat hepatoma cells. Cancer Res. 1979 Mar;39(3):1051–1055. [PubMed] [Google Scholar]
- Sener A., Van Schaftingen E., Van de Winkel M., Pipeleers D. G., Malaisse-Lagae F., Malaisse W. J., Hers H. G. Effects of glucose and glucagon on the fructose 2,6-bisphosphate content of pancreatic islets and purified pancreatic B-cells. A comparison with isolated hepatocytes. Biochem J. 1984 Aug 1;221(3):759–764. doi: 10.1042/bj2210759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sillero A., Sillero M. A., Sols A. Regulation of the level of key enzymes of glycolysis and gluconeogenesis in liver. Eur J Biochem. 1969 Sep;10(2):351–354. doi: 10.1111/j.1432-1033.1969.tb00697.x. [DOI] [PubMed] [Google Scholar]
- Singh V. N., Singh M., August J. T., Horecker B. L. Alterations in glucose metabolism in chick-embryo cells transformed by Rous sarcoma virus: intracellular levels of glycolytic intermediates. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4129–4132. doi: 10.1073/pnas.71.10.4129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uyeda K., Furuya E., Richards C. S., Yokoyama M. Fructose-2,6-P2, chemistry and biological function. Mol Cell Biochem. 1982 Oct 18;48(2):97–120. doi: 10.1007/BF00227610. [DOI] [PubMed] [Google Scholar]
- Weinhouse S. The Warburg hypothesis fifty years later. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 1976;87(2):115–126. doi: 10.1007/BF00284370. [DOI] [PubMed] [Google Scholar]
- Yamada K., Tillotson L. G., Isselbacher K. J. Regulation of hexose carriers in chicken embryo fibroblasts. Effect of glucose starvation and role of protein synthesis. J Biol Chem. 1983 Aug 25;258(16):9786–9792. [PubMed] [Google Scholar]
