Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Oct;82(20):6779–6782. doi: 10.1073/pnas.82.20.6779

Phylogenetic dichotomy of nerve glycosphingolipids.

N Okamura, M Stoskopf, F Hendricks, Y Kishimoto
PMCID: PMC390770  PMID: 3863128

Abstract

Galactocerebrosides and sulfatides are major characteristic components of vertebrate myelin. In contrast, glucocerebroside is the major glycosphingolipid of shrimp nerve. In this study, the concentrations of these glycosphingolipids in the nervous systems of animals from several evolutionary branches were determined by use of high-performance liquid chromatography. In nerves of protostome animals only glucose-containing glycosphingolipids were detected, whereas glycosphingolipids from deuterostomes contained predominantly galactose. Neither the glycolipids containing alpha-hydroxy fatty acids nor sulfate esters of the glycolipids, both of which always accompany galactocerebrosides in deuterostome myelin, were present in protostome nerves. This correlation suggests an evolutionary trend from gluco- to galactocerebrosides, which corresponds with changes in the nervous system from loosely structured membrane-enwrapped axons to multilamellar highly structured myelin.

Full text

PDF
6779

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballio A., Casinovi C. G., Framondino M., Marino G., Nota G., Santurbano B. A new cerebroside from Fusicoccum amygdali Del. Biochim Biophys Acta. 1979 Apr 27;573(1):51–60. doi: 10.1016/0005-2760(79)90172-3. [DOI] [PubMed] [Google Scholar]
  2. Björkman L. R., Karlsson K. A., Pascher I., Samuelsson B. E. The identification of large amounts of cerebroside and cholesterol sulfate in the sea star, Asterias rubens. Biochim Biophys Acta. 1972 Jun 19;270(2):260–265. doi: 10.1016/0005-2760(72)90238-x. [DOI] [PubMed] [Google Scholar]
  3. Bullock T. H., Moore J. K., Fields R. D. Evolution of myelin sheaths: both lamprey and hagfish lack myelin. Neurosci Lett. 1984 Jul 27;48(2):145–148. doi: 10.1016/0304-3940(84)90010-7. [DOI] [PubMed] [Google Scholar]
  4. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  5. Hauser G. Cerebroside and sulphatide levels in developing rat brain. J Neurochem. 1968 Oct;15(10):1237–1238. doi: 10.1111/j.1471-4159.1968.tb06842.x. [DOI] [PubMed] [Google Scholar]
  6. Heuser J. E., Doggenweiler C. F. The fine structural organization of nerve fibers, sheaths, and glial cells in the prawn, Palaemonetes vulgaris. J Cell Biol. 1966 Aug;30(2):381–403. doi: 10.1083/jcb.30.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Joseph J. D. Lipid composition of marine and estuarine invertebrates. Part II: mollusca. Prog Lipid Res. 1982;21(2):109–153. doi: 10.1016/0163-7827(82)90002-9. [DOI] [PubMed] [Google Scholar]
  8. Kaufman B., Basu S., Roseman S. Isolation of glucosylceramides from yeast (Hansenula ciferri). J Biol Chem. 1971 Jul 10;246(13):4266–4271. [PubMed] [Google Scholar]
  9. Ki P. F., Kishimoto Y. The lipid composition of urodele myelin which lacks hydroxycerebroside and hydroxysulfatide. J Neurochem. 1984 Apr;42(4):994–1000. doi: 10.1111/j.1471-4159.1984.tb12702.x. [DOI] [PubMed] [Google Scholar]
  10. Kishimoto Y., Davies W. E., Radin N. S. Turnover of the fatty acids of rat brain gangliosides, glycerophosphatides, cerebrosides, and sulfatides as a function of age. J Lipid Res. 1965 Oct;6(4):525–531. [PubMed] [Google Scholar]
  11. Nonaka G., Kishimoto Y. Levels of cerebrosides, sulfatides, and galactosyl diglycerides in different regions of rat brain. Change during maturation and distribution in subcellular fractions of gray and white matter of sheep brain. Biochim Biophys Acta. 1979 Mar 29;572(3):432–441. doi: 10.1016/0005-2760(79)90150-4. [DOI] [PubMed] [Google Scholar]
  12. Norton W. T. Biochemistry of myelin. Adv Neurol. 1981;31:93–121. [PubMed] [Google Scholar]
  13. O'BRIEN J. S., FILLERUP D. L., MEAD J. F. BRAIN LIPIDS: I. QUANTIFICATION AND FATTY ACID COMPOSITION OF CEREBROSIDE SULFATE IN HUMAN CEREBRAL GRAY AND WHITE MATTER. J Lipid Res. 1964 Jan;5:109–116. [PubMed] [Google Scholar]
  14. Ramsey R. B. Galactolipid content and fatty acid composition of amphibian central nervous system. J Neurochem. 1976 Dec;27(6):1559–1561. doi: 10.1111/j.1471-4159.1976.tb02647.x. [DOI] [PubMed] [Google Scholar]
  15. Schmitz F. J., McDonald F. J. Isolation and identification of cerebrosides from the marine sponge Chondrilla nucula. J Lipid Res. 1974 Mar;15(2):158–164. [PubMed] [Google Scholar]
  16. Shimomura K., Hanjura S., Ki P. F., Kishimoto Y. An unusual glucocerebroside in the crustacean nervous system. Science. 1983 Jun 24;220(4604):1392–1393. doi: 10.1126/science.6857257. [DOI] [PubMed] [Google Scholar]
  17. Shimomura K., Kishimoto Y. An improved procedure for the quantitative determination and characterization of sulfatides in rat kidney and brain by high-performance liquid chromatography. Biochim Biophys Acta. 1983 Nov 1;754(1):93–100. doi: 10.1016/0005-2760(83)90085-1. [DOI] [PubMed] [Google Scholar]
  18. Tamai Y., Yamakawa T. On the glucocerebroside in the brain of old patients. Jpn J Exp Med. 1968 Apr;38(2):143–144. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES