Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Oct;82(20):6903–6907. doi: 10.1073/pnas.82.20.6903

Organization of pigment proteins in the photosystem II complex of the cyanobacterium Anacystis nidulans R2.

H B Pakrasi, H C Riethman, L A Sherman
PMCID: PMC390796  PMID: 3931080

Abstract

Two chlorophyll-protein complexes associated with photosystem II (PSII) of the cyanobacterium Anacystis nidulans R2 have been detected. The larger of the two complexes, CPVI-1, contained a 71-kDa and a 42-kDa protein. The 71-kDa protein was determined to be the anchor protein of the phycobilisomes (the light-harvesting complex of A. nidulans PSII), since it was recognized by an antibody raised against a similar protein from another cyanobacterium. The second complex, CPVI-4, contained a previously unobserved 36-kDa chlorophyll-binding protein. Additionally, two other PSII chlorophyll-protein bands were characterized. CPVI-2 contained a 52-kDa band that was recognized by an antibody raised against the presumptive PSII reaction center protein of Chlamydomonas reinhardtii. It gave rise to a fluorescence emission peak (77K) at 695 nm, indicating that this chlorophyll-protein complex may harbor the reaction center of PSII. Finally, CPVI-3 was found to have a 45-kDa protein and to be immunologically related to the presumptive immediate-antenna protein of the C. reinhardtii PSII.

Full text

PDF
6903

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bricker T. M., Pakrasi H. B., Sherman L. A. Characterization of a spinach photosystem II core preparation isolated by a simplified method. Arch Biochem Biophys. 1985 Feb 15;237(1):170–176. doi: 10.1016/0003-9861(85)90266-8. [DOI] [PubMed] [Google Scholar]
  3. Bricker T. M., Sherman L. A. Triton X-114 phase fractionation of membrane proteins of the cyanobacterium Anacystis nidulans R2. Arch Biochem Biophys. 1984 Nov 15;235(1):204–211. doi: 10.1016/0003-9861(84)90269-8. [DOI] [PubMed] [Google Scholar]
  4. Chua N. H., Blomberg F. Immunochemical studies of thylakoid membrane polypeptides from spinach and Chlamydomonas reinhardtii. A modified procedure for crossed immunoelectrophoresis of dodecyl sulfate.protein complexes. J Biol Chem. 1979 Jan 10;254(1):215–223. [PubMed] [Google Scholar]
  5. Delepelaire P., Chua N. H. Electrophoretic purification of chlorophyll a/b-protein complexes from Chlamydomonas reinhardtii and spinach and analysis of their polypeptide compositions. J Biol Chem. 1981 Sep 10;256(17):9300–9307. [PubMed] [Google Scholar]
  6. Delepelaire P., Chua N. H. Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of thylakoid membranes at 4 degrees C: Characterizations of two additional chlorophyll a-protein complexes. Proc Natl Acad Sci U S A. 1979 Jan;76(1):111–115. doi: 10.1073/pnas.76.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guikema J. A., Sherman L. A. Chlorophyll-protein organization of membranes from the cyanobacterium Anacystis nidulans. Arch Biochem Biophys. 1983 Jan;220(1):155–166. doi: 10.1016/0003-9861(83)90396-x. [DOI] [PubMed] [Google Scholar]
  8. Guikema J. A., Sherman L. A. Organization and Function of Chlorophyll in Membranes of Cyanobacteria during Iron Starvation. Plant Physiol. 1983 Oct;73(2):250–256. doi: 10.1104/pp.73.2.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Manodori A., Melis A. Photochemical Apparatus Organization in Anacystis nidulans (Cyanophyceae) : Effect of CO(2) Concentration during Cell Growth. Plant Physiol. 1984 Jan;74(1):67–71. doi: 10.1104/pp.74.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mimuro M., Fujita Y. Excitation energy transfer between pigment system II units in blue-green algae. Biochim Biophys Acta. 1978 Dec 7;504(3):406–406. doi: 10.1016/0005-2728(78)90063-4. [DOI] [PubMed] [Google Scholar]
  11. Pakrasi H. B., Sherman L. A. A Highly Active Oxygen-Evolving Photosystem II Preparation from the Cyanobacterium Anacystis nidulans. Plant Physiol. 1984 Mar;74(3):742–745. doi: 10.1104/pp.74.3.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Redlinger T., Gantt E. A M(r) 95,000 polypeptide in Porphyridium cruentum phycobilisomes and thylakoids: Possible function in linkage of phycobilisomes to thylakoids and in energy transfer. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5542–5546. doi: 10.1073/pnas.79.18.5542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sherman D. M., Sherman L. A. Effect of iron deficiency and iron restoration on ultrastructure of Anacystis nidulans. J Bacteriol. 1983 Oct;156(1):393–401. doi: 10.1128/jb.156.1.393-401.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yamagishi A., Katoh S. Two chlorophyll-binding subunits of the photosystem 2 reaction center complex isolated from the thermophilic cyanobacterium Synechococcus sp. Arch Biochem Biophys. 1983 Sep;225(2):836–846. doi: 10.1016/0003-9861(83)90096-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES