Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Oct;82(20):6922–6926. doi: 10.1073/pnas.82.20.6922

Alteration of leukotriene release by macrophages ingesting Toxoplasma gondii.

R M Locksley, J Fankhauser, W R Henderson
PMCID: PMC390800  PMID: 2995993

Abstract

Mouse resident peritoneal macrophages incubated with ionophore A23187 or opsonized zymosan released leukotrienes (LT) B4 and C4 (LTB4 and LTC4) and LTC4 and LTD4, respectively. In contrast, incubation with Toxoplasma gondii, an obligate intracellular protozoan, led to the formation of 11-, 12-, and 15-hydroxyicosatetraenoic acids (HETEs), together with an unidentified compound, designated compound X. Each of these compounds incorporated [3H]arachidonic acid from the macrophage during phagocytosis of T. gondii. Compound X migrated immediately prior to 15-HETE by reverse-phase HPLC and was distinct from authentic monoHETE, monohydroperoxyicosatetraenoic acid (mono-HPETE), and dihydroxyicosatetraenoic acid (diHETE) standards. The generation of compound X by macrophages correlated with the extent of phagocytosis of T. gondii and with intracellular survival of the organisms. Prior antibody-coating of T. gondii or activation of macrophages, either of which inhibited survival and replication of ingested organisms, was associated with production of LTD4 but not compound X. Killed organisms also stimulated LTD4 release only. Although T. gondii concentrated arachidonic acid, they did not metabolize the compound to identifiable lipoxygenase products. Preincubation of macrophages with the relative lipoxygenase inhibitors nordihydroguaiaretic acid or 5,8,11,14-icosatetraynoic acid inhibited the formation of compound X. The absence of leukotriene production by macrophages ingesting T. gondii may explain the relative lack of a neutrophil inflammatory response in diseases due to obligate intracellular organisms. Alternatively, compound X may have functional activities that might mediate some of the host responses to cellular parasitism.

Full text

PDF
6922

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S. E., Jr, Bautista S. C., Remington J. S. Specific antibody-dependent killing of Toxoplasma gondii by normal macrophages. Clin Exp Immunol. 1976 Dec;26(3):375–380. [PMC free article] [PubMed] [Google Scholar]
  2. Bach M. K., Brashler J. R., Hammarström S., Samuelsson B. Identification of leukotriene C-1 as a major component of slow-reacting substance from rat mononuclear cells. J Immunol. 1980 Jul;125(1):115–117. [PubMed] [Google Scholar]
  3. Goldyne M. E., Stobo J. D. Human monocytes synthesize eicosanoids from T lymphocyte-derived arachidonic acid. Prostaglandins. 1982 Nov;24(5):623–630. doi: 10.1016/0090-6980(82)90032-6. [DOI] [PubMed] [Google Scholar]
  4. Hart D. T., Coombs G. H. Leishmania mexicana: energy metabolism of amastigotes and promastigotes. Exp Parasitol. 1982 Dec;54(3):397–409. doi: 10.1016/0014-4894(82)90049-2. [DOI] [PubMed] [Google Scholar]
  5. Hart P. D., Young M. R. Interference with normal phagosome-lysosome fusion in macrophages, using ingested yeast cells and suramin. Nature. 1975 Jul 3;256(5512):47–49. doi: 10.1038/256047a0. [DOI] [PubMed] [Google Scholar]
  6. Henderson W. R., Jörg A., Klebanoff S. J. Eosinophil peroxidase-mediated inactivation of leukotrienes B4, C4, and D4. J Immunol. 1982 Jun;128(6):2609–2613. [PubMed] [Google Scholar]
  7. Henderson W. R., Klebanoff S. J. Leukotriene production and inactivation by normal, chronic granulomatous disease and myeloperoxidase-deficient neutrophils. J Biol Chem. 1983 Nov 25;258(22):13522–13527. [PubMed] [Google Scholar]
  8. Hsueh W., Desai U., Gonzalez-Crussi F., Lamb R., Chu A. Two phospholipase pools for prostaglandin synthesis in macrophages. Nature. 1981 Apr 23;290(5808):710–713. doi: 10.1038/290710a0. [DOI] [PubMed] [Google Scholar]
  9. Humes J. L., Sadowski S., Galavage M., Goldenberg M., Subers E., Bonney R. J., Kuehl F. A., Jr Evidence for two sources of arachidonic acid for oxidative metabolism by mouse peritoneal macrophages. J Biol Chem. 1982 Feb 25;257(4):1591–1594. [PubMed] [Google Scholar]
  10. Jones T. C., Hirsch J. G. The interaction between Toxoplasma gondii and mammalian cells. II. The absence of lysosomal fusion with phagocytic vacuoles containing living parasites. J Exp Med. 1972 Nov 1;136(5):1173–1194. doi: 10.1084/jem.136.5.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lewis R. A., Austen K. F. The biologically active leukotrienes. Biosynthesis, metabolism, receptors, functions, and pharmacology. J Clin Invest. 1984 Apr;73(4):889–897. doi: 10.1172/JCI111312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Locksley R. M., Klebanoff S. J. Oxygen-dependent microbicidal systems of phagocytes and host defense against intracellular protozoa. J Cell Biochem. 1983;22(3):173–185. doi: 10.1002/jcb.240220306. [DOI] [PubMed] [Google Scholar]
  13. Locksley R. M., Wilson C. B., Klebanoff S. J. Role for endogenous and acquired peroxidase in the toxoplasmacidal activity of murine and human mononuclear phagocytes. J Clin Invest. 1982 May;69(5):1099–1111. doi: 10.1172/JCI110545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Murray H. W., Juangbhanich C. W., Nathan C. F., Cohn Z. A. Macrophage oxygen-dependent antimicrobial activity. II. The role of oxygen intermediates. J Exp Med. 1979 Oct 1;150(4):950–964. doi: 10.1084/jem.150.4.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Murray H. W., Spitalny G. L., Nathan C. F. Activation of mouse peritoneal macrophages in vitro and in vivo by interferon-gamma. J Immunol. 1985 Mar;134(3):1619–1622. [PubMed] [Google Scholar]
  16. Nathan C. F., Root R. K. Hydrogen peroxide release from mouse peritoneal macrophages: dependence on sequential activation and triggering. J Exp Med. 1977 Dec 1;146(6):1648–1662. doi: 10.1084/jem.146.6.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ochi K., Yoshimoto T., Yamamoto S., Taniguchi K., Miyamoto T. Arachidonate 5-lipoxygenase of guinea pig peritoneal polymorphonuclear leukocytes. Activation by adenosine 5'-triphosphate. J Biol Chem. 1983 May 10;258(9):5754–5758. [PubMed] [Google Scholar]
  18. Parker C. W., Aykent S. Calcium stimulation of the 5-lipoxygenase from RBL-1 cells. Biochem Biophys Res Commun. 1982 Dec 15;109(3):1011–1016. doi: 10.1016/0006-291x(82)92040-x. [DOI] [PubMed] [Google Scholar]
  19. Powell W. S. Rapid extraction of oxygenated metabolites of arachidonic acid from biological samples using octadecylsilyl silica. Prostaglandins. 1980 Nov;20(5):947–957. doi: 10.1016/0090-6980(80)90144-6. [DOI] [PubMed] [Google Scholar]
  20. Reiner N. E., Malemud C. J. Arachidonic acid metabolism by murine peritoneal macrophages infected with Leishmania donovani: in vitro evidence for parasite-induced alterations in cyclooxygenase and lipoxygenase pathways. J Immunol. 1985 Jan;134(1):556–563. [PubMed] [Google Scholar]
  21. Rouzer C. A., Scott W. A., Cohn Z. A., Blackburn P., Manning J. M. Mouse peritoneal macrophages release leukotriene C in response to a phagocytic stimulus. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4928–4932. doi: 10.1073/pnas.77.8.4928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983 May 6;220(4597):568–575. doi: 10.1126/science.6301011. [DOI] [PubMed] [Google Scholar]
  23. Scott W. A., Pawlowski N. A., Andreach M., Cohn Z. A. Resting macrophages produce distinct metabolites from exogenous arachidonic acid. J Exp Med. 1982 Feb 1;155(2):535–547. doi: 10.1084/jem.155.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wilson C. B., Remington J. S. Activity of human blood leukocytes against Toxoplasma gondii. J Infect Dis. 1979 Dec;140(6):890–895. doi: 10.1093/infdis/140.6.890. [DOI] [PubMed] [Google Scholar]
  25. Wilson C. B., Tsai V., Remington J. S. Failure to trigger the oxidative metabolic burst by normal macrophages: possible mechanism for survival of intracellular pathogens. J Exp Med. 1980 Feb 1;151(2):328–346. doi: 10.1084/jem.151.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wood D. E., Schiller E. L. Trypanosoma cruzi: comparative fatty acid metabolism of the epimastigotes and trypomastigotes in vitro. Exp Parasitol. 1975 Oct;38(2):202–207. doi: 10.1016/0014-4894(75)90022-3. [DOI] [PubMed] [Google Scholar]
  27. Young J. D., Ko S. S., Cohn Z. A. The increase in intracellular free calcium associated with IgG gamma 2b/gamma 1 Fc receptor-ligand interactions: role in phagocytosis. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5430–5434. doi: 10.1073/pnas.81.17.5430. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES