Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Nov;82(22):7495–7499. doi: 10.1073/pnas.82.22.7495

Cryobaroenzymic studies as a tool for investigating activated complexes: creatine kinase.ADP.Mg.nitrate.creatine as a model.

C Balny, F Travers, T Barman, P Douzou
PMCID: PMC390843  PMID: 3865173

Abstract

By combining cryoenzymology with baroenzymology (a technique we term "cryobaroenzymology") one can obtain "stop-action" pictures of the intermediates in an enzyme reaction pathway and then observe their structural and energetic features ("motion features"). We illustrate the potential of this approach by considering the formation of a transient state analogue complex of creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2): enzyme.ADP.nitrate.creatine, where nitrate mimics the transferable gamma-phosphate of ATP. Formation of the analogue complex is accompanied by a conformational change that manifests itself by tryptophan perturbation and thus allows kinetic studies by the stopped-flow method. We studied the formation of the analogue complex under cryoenzymic conditions as a function of pressure and solvent composition. This allowed a detailed description of the structural and energetic features of the activation process of an elementary step in an enzyme pathway.

Full text

PDF
7495

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balny C., Saldana J. L., Dahan N. High-pressure stopped-flow spectrometry at low temperatures. Anal Biochem. 1984 May 15;139(1):178–189. doi: 10.1016/0003-2697(84)90403-2. [DOI] [PubMed] [Google Scholar]
  2. Barman T. E., Brun A., Travers F. A flow-quench apparatus for cryoenzymic studies. Application to the creatine kinase reaction. Eur J Biochem. 1980 Sep;110(2):397–403. doi: 10.1111/j.1432-1033.1980.tb04880.x. [DOI] [PubMed] [Google Scholar]
  3. Barman T. E., Hillaire D., Travers F. Evidence for the two-step binding of ATP to myosin subfragment 1 by the rapid-flow-quench method. Biochem J. 1983 Mar 1;209(3):617–626. doi: 10.1042/bj2090617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barman T. E., Travers F. The rapid-flow-quench method in the study of fast reactions in biochemistry: extension to subzero conditions. Methods Biochem Anal. 1985;31:1–59. doi: 10.1002/9780470110522.ch1. [DOI] [PubMed] [Google Scholar]
  5. Biosca J. A., Travers F., Hillaire D., Barman T. E. Cryoenzymic studies on myosin subfragment 1: perturbation of an enzyme reaction by temperature and solvent. Biochemistry. 1984 Apr 24;23(9):1947–1955. doi: 10.1021/bi00304a010. [DOI] [PubMed] [Google Scholar]
  6. Douzou P., Petsko G. A. Proteins at work: "stop-action" pictures at subzero temperatures. Adv Protein Chem. 1984;36:245–361. [PubMed] [Google Scholar]
  7. Dreyfus M., Fries J., Tauc P., Hervé G. Solvent effects on allosteric equilibria: stabilization of T and R conformations of Escherichia coli aspartate transcarbamylase by organic solvents. Biochemistry. 1984 Oct 9;23(21):4852–4859. doi: 10.1021/bi00316a006. [DOI] [PubMed] [Google Scholar]
  8. Dreyfus M., Vandenbunder B., Buc H. Stabilization of a phosphorylase b active conformation by hydrophobic solvents. FEBS Lett. 1978 Nov 1;95(1):185–189. doi: 10.1016/0014-5793(78)80080-5. [DOI] [PubMed] [Google Scholar]
  9. Engelborghs Y., Marsh A., Gutfreund H. A quenched-flow study of the reaction catalysed by creatine kinase. Biochem J. 1975 Oct;151(1):47–50. doi: 10.1042/bj1510047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frauenfelder H., Wolynes P. G. Rate theories and puzzles of hemeprotein kinetics. Science. 1985 Jul 26;229(4711):337–345. doi: 10.1126/science.4012322. [DOI] [PubMed] [Google Scholar]
  11. Greaney G. S., Somero G. N. Effects of anions on the activation thermodynamics and fluorescence emission spectrum of alkaline phosphatase: evidence for enzyme hydration changes during catalysis. Biochemistry. 1979 Nov 27;18(24):5322–5332. doi: 10.1021/bi00591a010. [DOI] [PubMed] [Google Scholar]
  12. Hastings J. W., Balny C. The oxygenated bacterial luciferase-flavin intermediate. Reaction products via the light and dark pathways. J Biol Chem. 1975 Sep 25;250(18):7288–7293. [PubMed] [Google Scholar]
  13. Hui-Bon-Hoa G., Douzou P. Ionic strength and protonic activity of supercooled solutions used in experiments with enzyme systems. J Biol Chem. 1973 Jul 10;248(13):4649–4654. [PubMed] [Google Scholar]
  14. Knack I., Röhm K. H. Microcomputers in enzymology. A versatile BASIC computer program for analyzing kinetic data. Hoppe Seylers Z Physiol Chem. 1981 Aug;362(8):1119–1130. doi: 10.1515/bchm2.1981.362.2.1119. [DOI] [PubMed] [Google Scholar]
  15. Koshland D. E. Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc Natl Acad Sci U S A. 1958 Feb;44(2):98–104. doi: 10.1073/pnas.44.2.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Low P. S., Somero G. N. Activation volumes in enzymic catalysis: their sources and modification by low-molecular-weight solutes. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3014–3018. doi: 10.1073/pnas.72.8.3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Low P. S., Somero G. N. Protein hydration changes during catalysis: a new mechanism of enzymic rate-enhancement and ion activation/inhibition of catalysis. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3305–3309. doi: 10.1073/pnas.72.9.3305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Markley J. L., Travers F., Balny C. Lack of evidence for a tetrahedral intermediate in the hydrolysis of nitroanilide substrates by serine proteinases. Subzero-temperature stopped-flow experiments. Eur J Biochem. 1981 Dec;120(3):477–485. doi: 10.1111/j.1432-1033.1981.tb05726.x. [DOI] [PubMed] [Google Scholar]
  19. Milner-White E. J., Watts D. C. Inhibition of adenosine 5'-triphosphate-creatine phosphotransferase by substrate-anion complexes. Evidence for the transition-state organization of the catalytic site. Biochem J. 1971 May;122(5):727–740. doi: 10.1042/bj1220727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Morild E. The theory of pressure effects on enzymes. Adv Protein Chem. 1981;34:93–166. doi: 10.1016/s0065-3233(08)60519-7. [DOI] [PubMed] [Google Scholar]
  21. Ralston I. M., Wauters J., Heremans K., Dunford H. B. Activation volumes for horseradish peroxidase compound II reactions. Biophys Chem. 1982 Apr;15(1):15–18. doi: 10.1016/0301-4622(82)87012-9. [DOI] [PubMed] [Google Scholar]
  22. Travers F., Barman T. E. Cryoenzymic studies on the transition-state analog complex creatine kinase . ADPMg . nitrate . creatine. Eur J Biochem. 1980 Sep;110(2):405–412. doi: 10.1111/j.1432-1033.1980.tb04881.x. [DOI] [PubMed] [Google Scholar]
  23. Yagi K., Lange R., Douzou P. Spectroscopic demonstration of an initial stage of the complex of D-amino acid oxidase and its substrate D-alpha-aminobutyric acid. Biochem Biophys Res Commun. 1980 Nov 28;97(2):370–374. doi: 10.1016/0006-291x(80)90274-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES