Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Dec;82(23):7860–7864. doi: 10.1073/pnas.82.23.7860

Expression of murine 21-hydroxylase in mouse adrenal glands and in transfected Y1 adrenocortical tumor cells.

K L Parker, D D Chaplin, M Wong, J G Seidman, J A Smith, B P Schimmer
PMCID: PMC390869  PMID: 2999780

Abstract

The S region of the murine major histocompatibility complex contains two structurally related genes (21-OHase A and 21-OHase B) that encode 21-hydroxylase (21-OHase), an enzyme essential for the synthesis of adrenal steroids. Expression of these two genes has been analyzed by using oligonucleotide probes specific for the 21-OHase A and B genes and by DNA-mediated gene transfer. Hybridization of the oligonucleotides to blots of BALB/c adrenal RNA demonstrated that all 21-OHase mRNA is derived from the 21-OHase A gene. Cosmids bearing either the 21-OHase A or B gene were introduced into Y1 adrenocortical tumor cells by cotransfection with pSV2-neo. Cells transfected with the 21-OHase A gene expressed 21-OHase as determined by steroid metabolism and by RNA blot hybridization; 21-OHase transcripts were not detected in parent Y1 cells or in cells transfected with the 21-OHase B gene. Treatment of 21-OHase A transfectants with adrenocorticotropin increased 21-OHase mRNA levels by up to 10-fold, thus mimicking the observed effect of this hormone on 21-OHase levels in primary adrenal cultures. The regulated expression of the 21-OHase A gene in transfected Y1 cells should provide a useful system for the investigation of factors controlling the adrenal-specific regulation of 21-OHase activity.

Full text

PDF
7860

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asano K., Harding B. W. Biosynthesis of adrenodoxin in mouse adrenal tumor cells. Endocrinology. 1976 Oct;99(4):977–987. doi: 10.1210/endo-99-4-977. [DOI] [PubMed] [Google Scholar]
  2. Blin N., Stafford D. W. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976 Sep;3(9):2303–2308. doi: 10.1093/nar/3.9.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chaplin D. D., Woods D. E., Whitehead A. S., Goldberger G., Colten H. R., Seidman J. G. Molecular map of the murine S region. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6947–6951. doi: 10.1073/pnas.80.22.6947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  5. Funkenstein B., McCarthy J. L., Dus K. M., Simpson E. R., Waterman M. R. Effect of adrenocorticotropin on steroid 21-hydroxylase synthesis and activity in cultured bovine adrenocortical cells. Increased synthesis in the absence of increased activity. J Biol Chem. 1983 Aug 10;258(15):9398–9405. [PubMed] [Google Scholar]
  6. Kominami S., Ochi H., Kobayashi Y., Takemori S. Studies on the steroid hydroxylation system in adrenal cortex microsomes. Purification and characterization of cytochrome P-450 specific for steroid C-21 hydroxylation. J Biol Chem. 1980 Apr 25;255(8):3386–3394. [PubMed] [Google Scholar]
  7. Kowal J. Adrenal cells in tissue culture. 3. Effect of adrenocorticotropin and 3',5'-cyclic adenosine monophosphate on 11 beta-hydroxylase and other steroidogenic enzymes. Biochemistry. 1969 May;8(5):1821–1831. doi: 10.1021/bi00833a007. [DOI] [PubMed] [Google Scholar]
  8. Kowal J., Fiedler R. Arenal cells in tissue culture. I. Assay of steroid products; steroidogenic responses to peptide hormones. Arch Biochem Biophys. 1968 Nov;128(2):406–421. doi: 10.1016/0003-9861(68)90047-7. [DOI] [PubMed] [Google Scholar]
  9. Kramer R. E., McCarthy J. L., Simpson E. R., Waterman M. R. Effects of ACTH on steroidogenesis in bovine adrenocortical cells in primary culture--increased secretion of 17 alpha-hydroxylated steroids associated with a refractoriness in total steroid output. J Steroid Biochem. 1983 Jun;18(6):715–723. doi: 10.1016/0022-4731(83)90250-9. [DOI] [PubMed] [Google Scholar]
  10. Kramer R. E., Rainey W. E., Funkenstein B., Dee A., Simpson E. R., Waterman M. R. Induction of synthesis of mitochondrial steroidogenic enzymes of bovine adrenocortical cells by analogs of cyclic AMP. J Biol Chem. 1984 Jan 25;259(2):707–713. [PubMed] [Google Scholar]
  11. Kramer R. E., Simpson E. R., Waterman M. R. Induction of 11 beta-hydroxylase by corticotropin in primary cultures of bovine adrenocortical cells. J Biol Chem. 1983 Mar 10;258(5):3000–3005. [PubMed] [Google Scholar]
  12. Pierson R. W., Jr Metabolism of steroid hormones in adrenal cortex tumor cultures. Endocrinology. 1967 Oct;81(4):693–707. doi: 10.1210/endo-81-4-693. [DOI] [PubMed] [Google Scholar]
  13. Rae P. A., Gutmann N. S., Tsao J., Schimmer B. P. Mutations in cyclic AMP-dependent protein kinase and corticotropin (ACTH)-sensitive adenylate cyclase affect adrenal steroidogenesis. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1896–1900. doi: 10.1073/pnas.76.4.1896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Saunders D., Edidin M. Sites of localization and synthesis of Ss protein in mice. J Immunol. 1974 Jun;112(6):2210–2218. [PubMed] [Google Scholar]
  16. Schimmer B. P. Phenotypically variant adrenal tumor cell cultures with biochemical lesions in the ACTH-stimulated steroidogenic pathway. J Cell Physiol. 1969 Oct;74(2):115–122. doi: 10.1002/jcp.1040740203. [DOI] [PubMed] [Google Scholar]
  17. Simpson E. R., Waterman M. R. Regulation by ACTH of steroid hormone biosynthesis in the adrenal cortex. Can J Biochem Cell Biol. 1983 Jul;61(7):692–707. doi: 10.1139/o83-088. [DOI] [PubMed] [Google Scholar]
  18. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  19. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  20. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  21. White P. C., Chaplin D. D., Weis J. H., Dupont B., New M. I., Seidman J. G. Two steroid 21-hydroxylase genes are located in the murine S region. 1984 Nov 29-Dec 5Nature. 312(5993):465–467. doi: 10.1038/312465a0. [DOI] [PubMed] [Google Scholar]
  22. White P. C., Grossberger D., Onufer B. J., Chaplin D. D., New M. I., Dupont B., Strominger J. L. Two genes encoding steroid 21-hydroxylase are located near the genes encoding the fourth component of complement in man. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1089–1093. doi: 10.1073/pnas.82.4.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. White P. C., New M. I., Dupont B. HLA-linked congenital adrenal hyperplasia results from a defective gene encoding a cytochrome P-450 specific for steroid 21-hydroxylation. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7505–7509. doi: 10.1073/pnas.81.23.7505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Whitehead A. S., Bruns G. A., Markham A. F., Colten H. R., Woods D. E. Isolation of human C-reactive protein complementary DNA and localization of the gene to chromosome 1. Science. 1983 Jul 1;221(4605):69–71. doi: 10.1126/science.6857266. [DOI] [PubMed] [Google Scholar]
  25. Wigler M., Silverstein S., Lee L. S., Pellicer A., Cheng Y. c., Axel R. Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell. 1977 May;11(1):223–232. doi: 10.1016/0092-8674(77)90333-6. [DOI] [PubMed] [Google Scholar]
  26. Yasumura Y., Buonassisi V., Sato G. Clonal analysis of differentiated function in animal cell cultures. I. Possible correlated maintenance of differentiated function and the diploid karyotype. Cancer Res. 1966 Mar;26(3):529–535. [PubMed] [Google Scholar]
  27. Yuan P. M., Nakajin S., Haniu M., Shinoda M., Hall P. F., Shively J. E. Steroid 21-hydroxylase (cytochrome P-450) from porcine adrenocortical microsomes: microsequence analysis of cysteine-containing peptides. Biochemistry. 1983 Jan 4;22(1):143–149. doi: 10.1021/bi00270a021. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES